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Abstract

MARSZALEK, WIESLAW. Analysis of Partial Differential Algebraic Equations. (Under
the direction of Dr. Stephen L. Campbell)

In this thesis, we analyse infinite dimensional differential algebraic equations (DAEs).
First, we extend the notion of indez to partial DAEs. Three different type of indices (modal,
perturbation and algebraic) are defined and compared with each other. The comparison
with finite dimensional DAEs is also done. It is shown that infinite dimensional DAEs
exhibit richer behavior than finite dimensional DAEs, since the former may have solutions
(and indices) which depend not only on the forcing functions, data (initial and boundary
conditions), but also on the region of interest and method of approximation. In partic-
ular, the method of lines (MOL) with finite difference and finite element approximation
is analysed. Then, we analyse the traveling wave solutions in both linear and nonlinear
infinite dimensional systems. The solutions of dissipative systems of conservation laws in
gas dynamics and magnetohydrodynamics (MHD) naturally lead to DAEs when one looks
for a special solution in the form of a traveling wave between the left and right equilibria.
The structure of the DAE (semi-explicit or conservative) depends on the dissipative mech-
anism involved. Next, we analyse the singularity induced bifurcation in MHD, when an
equilibrium is placed at the singularity of a MHD DAE. It is shown that one may be able
to integrate through the singularity to connect two equilibria lying on the opposite sides
of that singularity. In some cases we reach and leave the equilibrium at the singularity in
finite time. Our analysis is illustrated by many numerical examples. We also present a few

related research topics for further research.
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1 Introduction to Differential Algebraic Equations
The differential algebraic equation, or DAE, is an equation of the form
F(u' u,t)=0 (1)

where the partial derivative % is identically singular. Here, F: ¢ C R*™+1 . R* where
is an open connected set. Many physical systems are initially modelled by DAEs. The most
important areas where DAEs occur are the constrained variational problems, constrained
path control problems in mechanical engineering (e.g. robotics), modeling of electrical
circuits, and the discretization of partial differential equations (PDEs) by the method of lines
or the method of moving grids. Many problems in the real world are initially modeled as (1).
‘Then, some problems, after additional manipulations on the equations involved (reduction
of variables), may be transformed into an ordinary differential equation, or ODE. However,
there is a large class of problems for which such reduction is not possible. Examples may
be found in [18],[50],[51]. Those problems must be treated as DAEs. Additionally, even if
the original problem does not seem to be modeled by a DAE, it may eventually end up as a
DAE problem. For example, this is often the case if we make approximations, or consider a
specific type of solution to the problem. An example of this kind is considered in this thesis,
where we look for a specific solution, namely the traveling wave solution in the systems of
conservation laws.

Historically, the very first attempts to solve DAEs involved reduction of DAEs to ODEs
by tedious manipulations. Then ODEs were solved by numerical integrators design exclu-
sively for ODEs [17], [28]. Next, different approach has been developed: to solve DAEs
directly. Thus the concept of solvability of DAEs had to be formulated and analyzed in
some detail. This concept is essentially based on an observation that DAEs are differential
equations defined on submanifolds of R®. The requirement is that (1) is solvable in the sense
that it has a family of solutions which are uniquely determined by the values at a given
¢t = to. These solutions have to form a manifold of integral curves, the solution manifold.
The formal definition of the solvability of DAE is as follows.

Definition 1.1 [10] Let I be an open subinterval of R, Q a connected open subset of R?s+1,

and F a differentiable function from Q1 to R*. The DAE (1) is solvable on I in §) if there
ezists an r dimensional family of solutions ¢(t,c) defined on a connected open set I x €,
QcC R, such that:

(i) ¢(t,c) is defined on all of I for each c € Q;

(i3) (¢u(t, c), d(t,¢),t) € Q for (t,¢) € I x Q;



(iii) if (t) is any solution with (¥'(t),(t),t) € Q, then ¥(t) = ¢(t,c) for some ¢ € §;

and

(iv) the graph of ¢ as a function of (t,c) is an (r + 1)—dimensional manifold.

Several issues follow from this definition. First of all, the definition does not impose condi-
tion of how smooth the solution of a solvable DAE should be. Second, the DAE has exactly

one solution in the case r = 0.
The following example illustrates how DAE may differ from ODEs.
Example 1.1 [14] The solution of the semi-explicit DAE

up = ug+ 61(t) (2a)
0 B(t)ur + 82(t) (2b)

is uy = —B71(1)82(1), uz = —[B71()é2(8)] — 61(t) which involves derivatives of both 3 and
6. Also, not all initial data (u1(0), uz(0)) will be consistent for (2) if we restrict ourselves

to continously differentiable solutions.

1.1 Basic types of DAEs

Equation (1) is the most general form of a DAE. It is called «a fully-implicit DAE. There
are also several special forms of (1) and a particular method of solving and analyzing of a
DAE may depend on such forms. One of the most commonly used forms of DAEs is the
semi-ezplicit form, The semi-explicit DAE is defined as

vy = filug,ug,t) (3a)
0 = fQ(Ul,UQ,t) (3b)

where (3b), a purely algebraic equation represents a constraint. A DAE may also have what
is called a hidden constraint which can be derived only after some additional manipulation
on equations.
We can use the semi-explicit DAE to show its relationship to an ODE. Let us consider
a solvable DAE (3) and differentiate (3b) with respect to ¢, as follows
0f2 , 0 ,  0f



If g;% is nonsingular, then from (4) we obtain

Thus (3a) together with (5b) gives an ODE. If we assume that this ODE is solvable and a
solution of the ODE satisfies (3b) at t = tp, then this solution must also satisfy the DAE
by the solvability assumptions.

Another special DAE is a DAE in Hessenberg form. The Hessenberg forms of size two and

three are the most common. The nonlinear Hessenberg form of size two is

/

up = g1(ug, uy,t) (6a)
0 = gg(ul,t) (6b)

with g%gﬁ—; nonsingular.
The Hessenberg form of size three is

ull = gl(u17u2,u37t) (73')
uy = go(uy, ug,t) (7b)
0 = gs(ug,t) (7c)

where gﬁﬁ-gﬂgﬂ is nonsingular. Note that, in general, none of these matrices of partial
2 Ouy dug

derivatives are square much less are they invertible. It is only the product that needs to be

square and nonsingular.

The Hessenberg form DAEs are important equations of the mechanics and variational
problems. Some beam deflection problems can actually be in Hessenberg form of size
four [31]. The Hessenberg form DAEs were also important from the point of view of the
development of numerical packages for solving DAEs. The programs like RADAUS5 [38] can

be used for solving DAEs in Hessenberg form.

The fourth special form of DAE is a conservative DAE which took its name from the fact
that such a DAE is usually found when analyzing system of conservation laws. The general

structure of a DAFE in conservation form is

[A(u()]) = f(t) (8)

or

ha(u(t))'(2) = f(t) (9)



DAEs in conservation form are considered in Section 5 in this thesis. It is possible to
transform (8) to a semi-explicit form (3), but this usually increases the indez of a DAE. The
indez is one of the most important notions in both linear and nonlinear DAEs. Different

types of indices are summarized below.

1.2 Index of DAE

Let us for a moment go back to a semi-explicit DAE (3). If 3%’; is nonsingular then we
are able to transform (3) to an ODE with just one differentiation of the constraint (3b).
We say that a semi-explicit DAE with such property has indezr equal 1. If 3—8% is singular,
suppose that with algebraic manipulation and coordinate changes we can rewrite (4) in the
form of (3b) but different uy; and u,;. We differentiate that new constraint equation and
see if it can be transformed to an ODE. If so, the original DAE will have index equal 2.
If not, we proceed in the same manner until we obtain an ODE. Each differentiation of
the transformed constraint equation increases the index by 1. Thus we have the following

definition.

Definition 1.2 The minimum number of times that all or part of (1) is differentiated with
respect to t in order to determine w' as a continuous function of u and t, is the indez of the

DAE (1).

Example 1.2 [1] Consider the following semi-explicit DAE

uy+us = fi (10a)
uy+uy = fa (10b)
Ug = f3 (10C)

If we differentiate (10a), (10b) and (10c), once, twice and three times, respectively, then we

have

ui +uy = fi (11a)
Gl = g (1)
uy = fY (11c)

Then, adding (11a), (11c), and subtracting (11b), we obtain
ug = fi — fi + f3' (12)
Two differentiations of (10c) and one differentiation of (10b) yield

uw=r—f5 (13)



One differentiation of (10c) gives
uy = f3 (14)

Since we need three differentiation to obtain u’, the index is 3.

The differentiations described above lead to what is known as the derivative array equa-
tions which plays important role in the analysis of DAEs as well as the development of
numerical algorithms for DAEs. The derivative array equations are

F(u' u,t)
Fy(u',u,t) + Fu(w', u, t)u’ + F(u, u, t)u
: = Gi(v,u,t,w) =0 (15)
d* ,
%‘F(U , U, t)

where w = [u®,... u+1]. We frequently drop the k subscript on G to simplify our

notation.

As the Definition 1.2 states, the index of a DAE (1) is k if Gx = 0 uniquely determines
u’ given consistent u and t. In this way we have what is called the global or differentiation

index, frequently denoted by vy.

The perturbation index, v, introduced in [38] is defined in the folowing way.

Definition 1.3 The DAE (1) has perturbation indez v, along a solution u on the interval
I =[0,T] if v, is the smallest integer such that if

F(@' a,t) = é(¢) (16)
for sufficiently smooth &, then there is an estimate
lli(t) = w(t)ll < € (11(0) - w(O)]| + 16115, (17)

in the ||.||,,—1 norm. C is a constant that depends on F, T and u.

It has been shown [9] that both the differentiation and perturbation indices can differ
significantly for a fully-implicit nonlinear DAEs (1).

The third type of index, the uniform differentiation indez is defined in the following
way. Let Q° (an extended neighborhood) be an open set in (¢, u,u’, w) space, and G be as
in (15).



Definition 1.4 The uniform differentiation indez, vyp of the DAE (1) on Q€ is the small-
est integer v, if it exists, such that the following four conditions hold on Q°:

(A1) Sufficient smoothness of G = G,y = 0.
(A2) Consistency of G = 0 as an algebraic equation.
(A3) J, =[Gy G) is I-full and has constant rank.

(A4) J, = [Gw Gy G) has full row rank independent of (t,u,u’, w).

It is known [7] that if (A1), (A2) and (A4) hold for one value of v, then they also hold
for lower values of v. This is not the case with (A3). Other properties and comparisons
between different indices of DAEs can be found in [9],{10],[38]. The indices presented above
will be analysed in more detail in the context of infinite dimensional DAEs in Section 3 in
this thesis.



2 Why Partial Differential Algebraic Equations?

While considerable progress has been achieved in the analysis of (1), or its various forms,
it appears that not much work has been done to link (1) to infinite dimensional systems
described by partial differential equations or PDEs. It turns out that many PDE problems,
due to their complexity, may be described by systems which naturally lead to (1). Also,
one may use different approximating techniques, such as the method of lines (MOL), modal
expansion, or traveling wave solution to obtain (1) even when the original problem does not
seem to be in any singular, implicit, or degenerate form. The goal of this thesis is to show
how to use the technique of DAEs in infinite dimensional systems. A variety of problems
will be considered stretching from purely theoretical issues in partial DAEs (PDAEs) to
interesting applications in boundary control problems, systems of conservation laws in gas

dynamics and magnetohydrodynamics.

Why is it important to link (1) to infinite dimensional problems? There exists several
reasons for this. First, even when a solution of any particular PDE problem is known it
is usually useful to look at the result from a different perspective. Therefore it may be
interesting to look at the PDE problem and its solution from the DAE perspective and see
what one can learn from that. An observation of this kind is given in Section 5, where
after presenting the travelling wave MHD DAE in Section 4, we discuss several implications
of this interesting DAE for those interested in developing numerical integrators for general
unstructured DAEs (see comments in Subsection 6.3). This is connected with the second
reason, namely, looking at a PDE problem from the DAE perspective may help to identify
new ideas and research topics in DAEs (e.g. research on DAEs with Jacobians with variable
null spaces, or null spaces dependent on z and z’; see Subsection 5.5). Third, by showing
the links between some theoretical notions of DAEs and properties of infinite dimensional
systems one is often able to attach a physical meaning to those notions. For example,
changes in the index of a DAE are closely related to the sonic points in the travelling wave
DAE for systems of conservation laws (Subsection 5.5). Fourth, it is believed that there are
no results reported linking the DAE theory to that of travelling waves (and therefore shock
solutions) in gas dynamics and magnetohydrodynamics and in this respect results presented
in Section 5 are new. Fifth, what looks like a motivational aspect, it is believed that showing
several possible applications of (1) in PDE problems will stress the importance of research
work on DAEs which exhibit much richer behavior than ordinary differential equations or
ODEs. Sixth, one can find many mathematical models of engineering systems (e.g. in
mechanics and chemical process control) that are written in PDAE forms. They are usually
converted to DAEs, but little consideration has been given to examine this approximation

process.



Given the above motivation we set the goal of this thesis as to apply the DAE perspective
to several infinite dimensional problems, identify possible relations between known results
in DAE theory and PDE problems, see how the results differ from what we know when (1)
is applied in lumped parameter systems, interpret the results in terms of DAE concept (e.g.
its index), and finally give a feedback as to what is needed to be researched on in DAEs in
order to solve some application problems.

We will usually use the abbreviation PDAE where the infinite dimensional system (dis-
tributed parameter system) is described by a system of linear PDEs with singular Jacobian
with respect to & (Section 3, and Subsections 4.1, 4.2 and 4.4). In other cases, like trav-
elling wave solutions in gas dynamics (GD) or magnetohydrodynamics (MHD), we prefer
to use the term travelling wave GD (or MHD) DAE. Similarly, the equation describing the
boundary control problem (BCP) considered in Section 4.3 is referred to as the BCP DAE.



3 The Index of an Infinite Dimensional Implicit System

3.1 General Differential Algebraic Equation

Infinite dimensional systems are more complex than finite dimensional ones, because of the
greater number of ways that functions can enter the equations. Rather than trying to give a
completely correct general definition we shall first describe what is needed to be taken into
consideration when defining an index of an infinite dimensional partial differential algebraic
equation. Then more concrete definitions of various indices will follow.

The linear partial differential algebraic equation or PDAE we consider here has the

general form
Auy + Bugy + Cu+ Dug = f(z,1) (18)

where u = u(z,t) € R", z € (0,L),t>0,L >0, A, B, C, D € R"™" detA = 0 and
f(z,t) e R™.
We will also usually assume the following boundary and initial conditions

u(0,t) =0, u(L,t) = 0, u(z,0) = g(z) (19)

where f and g are smooth enough and are consistent with the boundary and initial condi-
tions.

System (18),(19) can sometimes be regarded as a limit case of a singularly perturbed
parabolic system with A = A(e) where ¢ € R and detA(e) = 0 if € = ¢y. Systems with A

singular also arise directly in several areas.

The discontiuous and impulsive solutions that may exist in PDAEs raise a natural
question of what meaning can be given to the derivatives of u, f and g¢. Obviously, in
the case of impulsive or discontinuous solutions, u;, 4z, and other derivatives, cannot be
“functions” in the usual sense.

The results presented in this chapter concern the 3 major indexes which can be associ-
ated with linear or nonlinear PDAEs. The definitions of 2 of those indexes (perturbation
and modal) include either derivative terms (perturbation index) or involve linear finite di-
mensional DAEs resulting from the Fourier analysis of the infinite dimensional DAEs (modal
index). We shall consider these indexes in the context of smooth solutions of PDAEs only.
We assume that the inputs and data can be differentiated sufficiently many times, so that it
makes sense to talk about the special sup-type norms defined in (26)-(28) later on. There-
fore, in chapter 3 we define, analyze and compare various indexes in the case of PDAEs
with smooth solutions.

If for some reason one is not satisfied with the requirements of the smooth solutions it

would be natural to turn to the generalized functions, or distributions. Let us mention the



basic idea that stands behind the generalized solutions.

Given a function u, we define a linear mapping
b — / X)$(x)dx) (20)

where x € @ and ¢ € C°(Q) is a test function which vanishes on and outside T, the
boundary of § [27].
Then, the derivative du/0z;, z; € Q is defined as the mapping

— - [ w28 (21)

Clearly, this definition requires no differentiablity of u in the usual sense. The only differ-
entiability requirement is on ¢. If 2 has a smooth boundary T, and if w € CY(Q\T), u = 0
in the exterior of 2, then the right hand side of the last expression becomes

0

%ﬁqﬁ(x)d}c - v/Fu(x)qS(x)nidS (22)

Q

where n; is the unit outward vector at the boundary I'. That is, the distributional derivative
of u involves a term corresponding to the ordinary derivative and another term involving a
distribution supported on I'. The latter term results from a jump of u accross T. Then, this
term will accomodate the distributional terms present in solutions of (18) at the three sides
of @ =[0,L] xt, t > 0. Note that turning to the generalized solutions of PDAEs would
require appropriate changes in the definitions of indexes, since one cannot use the same
approach for both generalized and smooth solutions. In particular, our sup-type norms

(26)-(28) are not valid for generalized solutions.

Note that impulsive and discontinuous solutions are sometimes allowed in physical sys-
tems, for example in electrical circuits. On the other hand, in many applied areas only con-
sistent initial conditions and smooth solutions are considered. Therefore, in the xi“”applied”
part of this thesis considered in Chapter 5 we consider only smooth solutions. The traveling
waves considered in Chapter 5 are smooth solutions. It is true that the limit of the smooth
traveling wave solutions can be discontinuous, but we do not directly consider this limiting
solution. Also, in Chapter 4 we show that smooth solutions of the MOL approximations
will sometimes be approximations of distributional solutions of PDAEs.

Section 4.4 in chapter 4 deals with another type of smooth traveling wave solutions of
PDAEs and is included in this thesis to illustrate a different nature of the wave solutions
in infinite dimensional problems. This approach is not used in the analysis in chapter 5.

To make our presentation as clear as possible, we explicitely state at the beginning of

each chapter what type of solutions are we dealing with.

10



Before giving a detailed analysis of what we mean by the index of (18),(19), note that
(18),(19) can be regarded as a particular case of a more general DAE, or GDAE. Therefore,
in order to generalize the concept of index from the finite dimensional DAEs, we take the
following approach.

Let D; be various differential operators and the L; be integral operators. For the subset
2; of R™ we let Q@ = II'_,£; and ¥ be a set of functions u defined on Q. Let the u be
vector valued with the finite dimensional ranges. A set F of functions f defined on a subset
Qr of Q is called a set of forcing functions or inputs, while the u’s are called the states. In
general, the forcing functions need not have the same domain as the states. This happens
in various boundary control problems or specific outputs (e.g. [11]).

The third set D of functions g, defined on a subset Qp of Q is called the data. We
assume that there is finite number of linear operators D; with right inverses L;. D; and L;
may be defined on data, inputs, or states. Let P denote a polynomial in various L;, D;, We
assume that it makes sense to add, or multiply the given operators in P.

A generalized DAE (or GDAE) consists of two relationships, namely

F(Plu,Pgu, vaey PT’LL,PT+1f, ,me)
B(Pm+1u’ '--7Psu’Ps+lg’ 7PNg)

0 (23a)
0 (23Db)

The relationship (23a) is the actual DAE. The second relationship (23b) describes how the
data and the state are to be related.

Data are those conditions on solutions of (23a) that we would like to hold. The data
is the generalization of the idea of an initial condition for a finite dimensional DAE. Those
conditions which must hold are incorporated into the definitions of the different sets 2, F,
D. Examples might include smoothness assumptions or boundary conditions for a PDE.
This distinction of which are and are not data must be made by the user and has important
consequences for the interpretation of the solution.

There are different ways to proceed at this point. In some formulations the operators
and functions are treated as purely algebraic objects. This is the case with the differen-
tial algebra approach. In the next section we give a specific example where we define a
purely algebraic index. This approach can be very useful and provides considerable insight
[21],[22]. However, if we are interested in numerical analysis, we need to take a different ap-
proach. In numerical settings the various sets and spaces are equipped with topologies and
it makes sense to talk of continuous operators. As we will show in this section properties
of the numerical solution of a constrained PDE can be dependent not only on the algebraic
properties of the operator but also on quantities such as the domain which do not play an
obvious part in the differential geometric theory. For concreteness we will assume that the

topologies are given by some type of norm. This terminology is adapted from the finite
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dimensional cases but there are certain differences to be pointed out later. For a given f,
u is a solution of (23a) if it satisfies the equation (23b) in the specified sense. Typically
this is pointwise or almost everywhere. A data g is consistent (for a given f) if there is a
solution u € X which satisfies the data, that is (23a) holds for this f,g. Consistent with
the finite dimensional case we say that the GDAE is solvable if for every forcing function f
there are solutions of the GDAE for some data. These solutions are uniquely determined by
consistent data. One can restrict the concept of solvability to being a local concept. This
is often done with nonlinear problems.

The solutions u depend on the data and the forcing functions. Our definition of the
index generalizes that of the perturbation index [38]. We say that the infinite pointwise
perturbation index at 4, which satisfies (23) with f, g, is v,° if a solution u of (23) with f
and consistent g satisfies

llu —all <3 MGIIP;(f = DIl + 3 BilIQi(g — 9| (24)
j=0 j=0

where B;, M; are nonzero constants, P;, @; are fixed polynomials in the D;, and vp° is one
more than the largest combined power of the D; that occurs. Combined power is the sum
of the powers of the the D; in any one product in a P;. ||.|| may depend on j, P;, Q;. The
(mazimum) perturbation indez at @ is the maximum of vp° in a u neighborhood of 4.
Note that (24) has greater complexity than the formula in the finite dimensional case.
(24) includes not only derivatives of f but also of the data g. Also, the index depends on the
particular choice of the basic operators D; and polynomials Pj, @;. One of the advantages
of implicit models is that they make it easy to change ones mind about what is input and
what is output and what is data. However, the index is dependent on making a particular

choice.

3.2 Perturbation Index

We now turn to carefully examining (18) with the boundary and initial conditions (19).
Restricting ourselves to this specific class of linear time invariant PDAE will allow us to
make several observations. In particular, we will show how our approach differs from the
algebraic approach. We will frequently consider the special case of (18) with C = 0, D = 0.
This system is explored in [18], [19] where the eigenfunctions for the operator §?/dz? were
used. Here, we apply an orthogonal basis. At this point we shall keep our calculations
somewhat formal, knowing that one need to consider the question of convergence. Let
g;j(z) = sin(nwa/L)/VL, A, = —(n7/L)2. we can then consider the series

u(z,t) = Y gi(@)ui(t),  flz,1) = g;(z)f(1), UD($)={ZUOJ‘91($) (25)

i=1 =1 i=1

12



In general, c;(t) is the jth coefficient of c¢(z,t) with respect to g;(z). We need to define
some norms in order to be precise about the perturbation index. Let || .|| be the usual

Euclidian norm on R". For a function ¢(z,t) we define ||c||, to be

0<i<T

L 1/2
lelloo = mm<(/ deJNﬁh> = max [le(z, 0 (26)

where |[.]|2 is the usual L, norm in the z variable. Equivalently,

- 1/2
lelloo = 2% (Z IICj(t)IIQ) (27)

Finally, we define

z+k

P 4 1/2 P g
]7'('

Note that ||c|(, ) being finite implies that one can take p t-derivatives and g z-derivatives
of ¢ term by term.
The estimate (24) then takes the form

lu= il < C1IIS = Fllipyan) + Callg = 3l e (29)

We take the perturbation index v;° of (18),(19) to be

vy, = 14 min{max{pi + q1,p2 + ¢2} : (25) holds for (p1,¢1,P2,¢2)} (30)

In this definition of the perturbation index we have taken Dy = 9/9¢, P;(2) = 27,
Dy = 8/0z, Qi(z) = 2. This is the most natural choice in terms of the usual concept of
smoothness. However, since the partials always occur an even number of times we could

have taken D, = 0?/8z2. This would have altered the value of the index for some problems.

3.3 Algebraic Index

The algebraic approach to time invariant PDAEs has the characteristic that it tends to be
independent to some extend of the data.

Suppose that r(s,z) is a fraction of two real polynomials in the real variables s, . We
say that r is s-proper if lim,_oo7(s,2) = 0 for almost all z. z-proper is defined the same
way. We say that r is proper if is both s— and z-proper. A matrix has a given properness
property if every one of its entries has that property.

We call (18) regular if det(sA+22B + C + Dz) # 0. Regularity is nessary for solvability.
To see this suppose that we do not have regularity. Then there is a matrix polynomial

13



D(s, z) such that (sA+22B+C + Dz)E(s,z) = 0. Let b be any function of (z,t) for which
enough derivatives of b satisfy the boundary conditions. Then E(%, f—;;)b is a solution of
the associated homogeneous equation (18),(19).

Assuming we have regularity, let
R(s,z) = (sA+2*B+C + Dz)"! (31)

We define the algebraic t-indez v; of (18) to be the smallest integer ny such that s™™ R(s, 2)
is s-proper. The algebraic z-indez v, of (18) is the smallest n, such that 272 R(s, z) is
z-proper. We want the algebraic index to capture, among other things, the highest degree
of smoothness required of f. This leads to the following definition. let R;; be the ¢, j entry
of R. Then the algebraic index of (18) is

vy =max{ min {n; +ng:27™ s ™R, ;(s,z) is proper}} (32)
41 m,nz 20

Before considering (32) in some detail we note that regularity is no longer sufficient in

general to guarantee solvability.

Proposition 3.1 Suppose in (18) that C' = 0, D = 0. Suppose that the boundary conditions
in (19) are replaced by linear homogeneous boundary conditions for which 0 is an eigenvalue
of 8%2;. Then (18) is not solvable for any A,B if A is singular.

Proof. Let y(z) be a scalar eigenfunction for 0 for 8%27' Thus v satisfies the boundary
conditions. Let Av = 0 and (t) be any smooth scalar function. Then u = y(z)¥(t)v is
a solution of the homogeneous PDE which satisfies the boundary conditions. The initial
condition ug determines only 1(0) and not (t). a

A simple example of the above phenomena is gotten by taking the boundary conditions
to be u.(0,t) = uy(L,t) = 0. Another example is Example 3.1.

3.4 Modal Index

We consider now the case where D = 0. Under the assumption that » and f are smooth
enough in ¢ and = we may substitute the series (25) for u, f into the PDAE (18) and get
the modal DAEs

A + (B +Cy(t) = fi(t), =1 (33a)
u]'(O) = ug; (33b)

14



The solutions of the modal DAEs are determined by the parametrized family of matrix

pencils
P/\j = {A,/\]’B + C} (34)

It is important to note the different roles played by the different components of (34).
The matrices A, B,C come from the PDAE (18). However, the ); are discrete numbers
depending on L, j. In general, there are several ways to interpret (18),(19), depending on
what is chosen as the state and what is free. Here, we consider (18), (19) in the usual
situation where f is free and u is the state.

We take @ = Qr = [0,1] x [0,T], Qp = [0,1] x {0}. We include in the definitions of X,
JF that the boundary conditions in (19) are defined.

We shall say that (18) is modal solvable if (33) is solvable for every j. This means that
we incorporate some smoothness assumptions into our spaces Q. Let v; be the index of
(33a) if (34) is a regular pencil. Then the modal indez is

vy = m]ax{z/j} (35)

Proposition 3.2 Suppose that P, is a regular pencil for every o < 0, then (18) is a modal
solvable PDAE for any L. However, if there exists a number & < 0 for which P is not
regular and a number & for which P is regular, then (18) is modal solvable for all L except

for a countable number of L where it is not solvable.

Proof. The first statement is clear. So suppose that Pj is regular. Note that det(AA +
aB + C) is a polynomial in two variables. Thus (34) is regular for « near @ On the other
hand (34) is not regular if I = nr(—a)"/2 O

Example 3.1 Let A be singular and B=C=I. Then the conditions of Proposition 3.2 are
met with & = —1 and & # —1.

Example 3.2 Let

10 11 0 -1 0 0 ,
A_[O 0}’ B_Z[—l 1]’ C_[Ol] (36)
For most values of L we get that all the DAEs (33) are index one. For sufficiently smooth

[ the solution will be continuous in f. However, for L equal say ™ we have that (33),(36)
will be indez two for j = 2 and index one for j # 2. Thus vy is 1 or 2 depending on L.
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3.5 Comparison of Indices

We now will compute the algebraic and perturbation indices for Example 3.2. An easy

calculation gives

4+1:§ T 22 .

_ 16s+4522 —2 16544522 —2

R(s,z)=4 o o (37)
16544522 —22  165+452° —2%

Only the R;, term is of interest since all the other terms are proper. We have v, = 0,
vy =1,and vy = 1.
The modal DAE is

[ég}u}+[3 117}%:&' (38)

where v = :Lg;. Note that lim; ..oy = +00. For a given value of L there will be at most
one exceptional case, namely when v = 1. Other than for this case, if it exists, simple

algebra gives (for 7y # 1) that (38) is the same as

, 7 7
uy;(t) — Wi = I‘:;f% + fy (39a)
1
Uz = I‘;‘;[fzj — Y] (39b)
The key point to note from the index one system (39) is that the solutions look like
bounded functions of f; as j goes to infinity since —y?/(1 — 7) is positive for large j. Thus

we have that with respect to the norms given

Proposition 3.3 If the length L is such that v # 1 for any j, then all three indices V33,
vy, vy of the PDAE in Example 3.2 are one. On the other hand if vy = 1 for some value
of j, then vy =1, vg3 = vy = 2.

This example illustrates an important point, namely that the algebraic and the pertur-
bation index can differ. The next proposition gives a more general result.

Proposition 3.4 Suppose that A is a singular square matriz. Then there is an open set of

matrices B, C' such that
(1) sA+ 22B + C is regular

(ii) The modal DAEs are all index one for most L. In this case v$3 = 1. If the modal DAE

have negative eigenvalues, then v = 1 also.
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(iii) There is a sequence of L, with no accumulation point, for which at least one of the

modal DAFEs has vp, vas greater than one.

Proof. Without loss of generality, by performing coordinate changes we may assume that

= 10 _ Bl B2 _ Cl Cz . .
4= [0 0]- Then B = [33 B | C= [03 04]. The modal DAE will be index

one precisely when yB4 4+ Cy4 is invertible. Also det(yB4 + C4) is a polynomial in 4 whose
coefficients are continuous in the entries of By, C'y. The proof is completed by noting that
there is an open set of By, Cy such that yB4 4+ C} is regular and det(yBs + C4) = 0 for
some v < 0. a

To help understand what is happening in this example, note that a given entry of R(s, 2)
has the form

m 22\ i
Bl ) = B o

2 is really the operator §%/9z?%. If a is an

where the p;, ¢; are polynomials. However, 2
eigenvalue of 3% /dz? with corresponding eigenvector ¢, then on that mode the system looks

like
m1 i
Lico pila)s
== 41
Y% (o) ()

If gm,(c) = 0, then it is possible for R;;(s,\/a) to have higher index in s then R; ;(s,z)
does. For example, for (36) suppose that we have that —4 is an eigenvalue for §2/0z?% so

R; (8, 2)| 220 =

that 22 would be replaced by —4. Then we get that

R=a]} & (42)

Note that (36) had t-index of 1 but (42) has t-index of 2 because of the reduction of order

in terms of s of the denominator in Ry .

INES

[} ol e

EA
4

In this example we have taken the boundary conditions as part of the definition and the
initial conditions as the data which may or may not be consistent. However, there are other
options. For example we could view both initial conditions and the boundary conditions
as data. In this case we are allowing for them to be consistent for some solutions and not

consistent for other solutions.

Our next example illustrates why we had to modify the definition of the perturbation
index to include derivatives of the data. This PDAE is not in the form (18).



Given a function f(z,w) of several variables, let L, be the operator of antidifferentiation

with respect to z, i.e.

L(f(zw)) = [ " f(s,w)ds (43)

Example 3.3 Consider the PDAFE

U+ vz = fi(z, 1) (44a)
v = faz,t) (44b)

u(z,0) = gi(2) (44c)
v(z,0) = ga2) (44d)
v(0,1) = gs(t) (44e)
0<z2 <1, 0<t<LT (44f)

We treat (44c)-(44e) as data. The solution of the PDAE (44a) and (44b) is

u = Lify —tch(z) - LtLt% + c3(z) (45a)
vo= LtLJ;fQ + Ltcl(t) + CQ(iL‘) (45b)

Applying the data to (187) we get that

ca(z) = h(z)
Cg(it) = hg(lﬁ)
Ltcl(t) = h3(t)

From the solution we thus see that u,v depend on first z-derivatives of f but second
z-derivatives of the data g. In this case we would say that & = 3. We have not yet defined
the modal index, v§7, for this system since the g; defined earlier are not eigenfunctions of
?/0x? + 0/0x.

On the other hand, for this example

O =

R(s,2) = [ F ] (47)

S5z

so that vg = 3 while > = 2. Note that »$ in this example captures the dependence on

the first z-partial of f,. However, it misses the dependence on the second z-partial of g;.
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This dependence on derivatives of data is a new type of behavior not present with finite
dimensional DAEs.

One way in which PDAEs differ significantly from ODEs is that there is more than one
direction in which system can exhibit higher index. In fact, an explicit PDE can have index

greater than zero.

Example 3.4 Consider the explicit PDE in the form of (18)

Ut Uy = fl($7t) (483’)
uy = fa(z,t) (48b)
or equivalently
10 0 1
A—[Ol},B—[OO},C’—O,D—O (49)

We see in this example that all the modal DAEs are index zero so that vy = 0. The

solutions of (48) are

u = Lifs+ c1(z) (50a)

2
v = I (fl - Lt%"i - c’{(x)) + ex(2) (50b)

Here vg = 3 because the solution depends on second derivatives with respect to & of a
t-integral of f; and also second derivatives of ¢; = u(z,0). Thus in general, we can not just
use the indices of the modal equations themselves to estimate the index of a PDAE. For

this example, we have

O Wi

22
R(s,2) = [ N } (51)
The algebraic t-index is zero, the algebraic z-index is 3, and vy = 3. Unlike the previous

Example 3.3, where v < v, we have here that v§; < v = v.

As an additional illustration suppose (18) has the form

Al A Ug B1 B2 Upy Cl C u _ fl(w,t
el Bl 2]l -Les] e
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Notice that
Bivgy + Csv = fo(z,t) (53)

is a DAE in the spatial derivative d/0z.
The next theorem gives a general statement that covers this example.

Theorem 3.1 Consider the PDAE Auy + Bug, + Cu = f(z,t) with boundary conditions
(19). If AB + C is a regular pencil with indez v, then vy > 2v — 1.

Proof. We take an f(z) whose first v derivatives also satisfy the boundary conditions and
look for a steady state solution u(z). But then Bu" 4+ Cu = f. Since AB + C is regular of
index v we know from the solution of the DAE that « depends on 2(v — 1) derivatives of f.
O

In the modal DAE, a spatial PDAE gets converted to an algebraic equation.

Example 3.5 Consider the PDAFE

R R

which has the solutions

u = fi— f3+ faza (55a)
uy = fa— fa— it St = fatee (55b)
v = f3— fae (55¢)
vz = fa (55d)

This ezample has t-index 2, z-indez 3, and vy = vy =4, but vyy = 2.

The next example generalizes Example 3.4. It is not covered by Theorem 3.1.

Example 3.6 Let N be an r X r upper triangular nilpotent Jordan block and consider the
PDE

The modal equations are all index zero so that vy; = 0. However,
r—1
tl
u= Z(—NLt )f-l-z N-——— )e(z) (57)
=0
where c(z) is an arbitrary function of x. For this example, 153 = 0 but vg = vy =

2(r—1)+ 1.

20



Example 3.7 Let N in Ezample 3.6 be an r X r upper triangular nilpotent Jordan block.

Then vy =r but vy = vy = 2r.

Another way that GDAEs differ from DAEs is that the index can depend on the par-
ticular way we present initial conditions. In particular, the consistent initial conditions can
satisfy differential equations themselves. D can then be chosen to be different projections
of the initial values.

Example 3.8 Consider the PDAE in the form (18)

u+ v, = fi(a,t) (58a)
Vez —w = foz,t) (58b)
wy = f3(z,t) (58¢)

along with the homogeneous boundary conditions and the two different initial conditions in

(19)
’U(II:,O) = UO('T) (59)

w(z,0) = wo(z) (60)

The general solution of the PDAE (58) can be written

v = Li(fi— f2— Lifs — e1(2)) + eu() (61a)
v = LioLg(fa4 Lifs + e1(z)) + zez(t) + ¢3(t) (61b)
w = Lifs+ec(z) (61c)

We assume that f also satisfies the initial condition in (19) which implies that ¢, ¢y are
determined by the boundary conditions. Also

u(z,0) = c4(z) (62)

If we use the initial condition (59), (62), then w(z,0) = ¢i(z) = wo(z) and v = 1. But if
we use the initial condition (60), (62) we have that vo(z) = L, L.(f2(z,0)+ci(z))+zco(0) +
¢3(0). Thus ¢;(z) = vy(z) and ¥ = 3. On the other hand, for this example we have that

-1 1 _1 _1

s 22 0 s I
R(s,z)=0 2% -1 =10 & 4 (63)

0 0 s 0 0 1

Thus v;° = 1. Also v3} = 1.
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One of the things that v37, v$ fail to capture is the need for convergence of the approx-

imate series. The next example illustrates this.
Example 3.9 Let
10 1101 0 0
A‘[o 0}’3‘2[11}’0‘[01} (64)

The modal DAE is
10 ; 0 v .
[0 0}"]""{_7 1_7}uy—f1 (65)

where v = %’5;. For a given value of L there will be at most one exceptional case, namely
when v = 1. Other than for this case if it exists, simple algebra gives (for v # 1) that (65)

is the same as

Y 7
uy ;(t) + _1—’7mj = 1_7f2j+f1j (66a)
1
Ui =TT 7[f2j + yuyy) (66h)
Let f = 0 for the moment. Then we have that
Uy = e-—t—y2/(1—'v)ulj(0) (67)

But v — o0 as j — oo. Thus vp is not even defined unless we place strong assumptions on
the convergence of the Fourier coefficients of both the initial conditions and on f.

Since the exponential also appears in the solution for f # 0,
t
e f(s)as (68)
0

we get that an data that may be acceptable on one time interval may not be acceptable on
a longer time interval. In this case we could have a dependence of v’ on the length of the
time interval.

We now will compute the algebraic indices. An easy calculation gives

4+zz . 22 .

+ + 16544524+

R(S, Z) =4 16s 48;2 z s ‘f:: z (69)
16544522 42 16s+4s22 421

Only the Ry, term is of interest since all the other terms are proper. We have v, = 0,

vy =1,and v = 1.

Summarizing the above, we have shown how to define various indices for the linear
PDAE. Examples show that even for linear time invariant PDAFEs all three indices can differ
from each other. The perturbation index may depend on inputs, data (initial conditions)

and on the domain.
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3.6 Examples from Applications

We now mention some examples of PDAEs that arise in applications. More examples can
be found in [14]. We do not present a detailed analysis of these examples. Rather our
intention is to illustrate how PDAEs of types discussed earlier occur and what are their
indices.

Example 3.10 The incompressibe Navier-Stokes equations take the form

g—? +(uwVu+Vp—yVi = 0 (70a)

Vaua = 0 (70b)

Here u is a 3-vector and p is a scalar function of 3 variables. For our purposes we shall

give the 1-D form of these equations. Let u = [uy, p]. Then we have

10 10 w 1]
[0 0}‘”‘7[0 0]““”[1 0}’?‘0 (1)

The linearized form is

ool e |5 3] ums 72
with f=0. For this system
s+az—v22 z - 110 z
R(s,z):[ z 0} :ﬁ[z 7z2—az—s} (73)
so that the t-indez is 2 and the z-indez is 1. Letting f be nonzero and solving we get that
v = Lofa+4(1) (74a)
w o= ~LLIZ )+ 9 - alf t 10+ f (74b)

where @(t), () are arbitrary functions that are determined by the boundary consitions.
The presence of ¢'(t) and (f2). shows the perturbation indezx is two for some boundary
conditions. This reflects the well known fact that the MOL solution of the Navier-Stokes
equation leads to an index two DAFE [1].

Example 3.11 Consider a tubular reactor described by the following system [26]

Cy = 1Ch +cC, +c3C (75a)
hy = e4T.. +csh, + cgC (75b)
0 = —h + C7T + CgT2 + CQTB + C10T4 (75C)
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Note that while it is theoretically possible to solve (75¢) for T it is not practical to do so and
the problem is best handled as a DAE. The constraint (75¢) is nonlinear. Let u = [C, h, T]7.

If we linearize we get locally

1 00 ¢ 0 0 c 0 0 cz 0 0
0 1 0ju—]0 0 ¢4 |tUpe—| 0 ¢e5 O0|u,—|cc 0 0 [u=0 (76)
0 00 0 0 0 0 0 0 0 -1 e¢q

None of the coefficients is invertible. As noted earlier, the algebraic index will sometimes

indicate parameter values resulting in higher index behavior. Let Ay = s — coz — c3 — 2%¢;

and Ay = scqy — ci1¢52 — cq2%. Then

Ay 0 0
C6C11 CnAl —0422A1 (77)
Cg A (3 - CSZ)Al

1
R(s,z)=
(s,2) A
For most values of the ¢; we get algebraic index 1 in t and z. However, if cy1 = 0 but ¢4 # 0,
then the (3,3) entry has t-index equal 2. The perturbation indez is also 2 for some boundary
conditions if cy1 = 0, and ¢4 # 0 since we then have that

Uy = fa (78a)
uz = éLsz (% - Cs% — Cplly — f2) + ¢1(1) + ¢2(1) (78b)

with uy = C.

Having ¢y, small but nonzero corresponds to a situation where the DAFE that results
from the method of lines is index 1 but the Jacobian of the constraint is ill conditioned and
numerical difficulties are possible since the index I solution is trying to approrimate the

indez 2 solution when ¢y = 0.
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4 Differential Algebraic Equations in Infinite Dimensional
Linear Systems

4.1 Linear Partial Differential Algebraic Equations: Method of Lines and
Modal Analysis

We shall consider here the analysis of a linear PDAE (18), (19) via the method of lines
(MOL) and compare the results with the modal approach discussed in Subsection 3.5.

The MOL solutions of PDAEs will be considered here for both consistent and inconsis-
tent data (initial and boundary conditions). We will show that for the inconsistent data, the
MOL solution of a DAE can be considered as an approximate solution of the corresponding
PDAEs with impulsive terms. This applies also to the boundary control problem considered
in section 4.3.

There has been a substantial amount of effort expended in the numerical analysis com-
munities in developing numerical methods for integrating DAEs. One of the earliest motiva-
tions for developing DAE software was that DAEs occur in the MOL. Even when the PDE
is explicit, it usually happens that adding various constraints or boundary controls, the
problem becomes implicit. Usually MOL is used without worrying about whether the DAE
being solved correctly reflects the PDAE. We will show how our discussion of fully implicit
PDEs has important implications for the interpretation of MOL simulation of PDAEs.

It suffices for our purpose to consider (18),(19) with D = 0 in (¢,z) on rectangular
domain. By MOL we will mean a finite dimensional approximation in the z variable, by

either finite differences or finite elements, leaving a DAE in t.

4.1.1 MOL Using Differences

Let @ be the N x N tridiagonal matrix with Q;; = a, Q;i41 = b, Qit1; = ¢. The N
eigenvalues of () are given in [32]. For the special case of a = —=2,b = ¢ = 1, the eigenvalues

and eigenvectors are

A 2+ 20—t v [sin sin sin
s = = y Vg = s » 81 Yooy
N+1 N+1 N +1 N +1

ST 2sm 3sm . Nsrm a

—_—T s =1,.., N
SmN-I—l ;S 5 oeny

(79)

B We also need the following basic properties of the @ product of two matrices (the

Kronecker product). For any two matrices A, B the product A ® B replaces each entry of

A by a;;B. Thus (A® B)(C ® D)= AC ® BD, and (A® B)T = AT ® BT if the matrices

are of correct sizes. Let D = I © D be a block diagonal matrix with D on the diagonal so
that D(A® B) = A® DB. If a is a scalar, then «(A® B) = (eA ® B) = (A ® aB).

Suppose that we are doing MOL with N + 1 evenly spaced grid points z, = sL/(N + 1)
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using centered differences. Let Ui(t) = u(z;,t). The MOL DAE is then AU! + 5 B(Uiy1 —
2U; + Uiq) + CU; = fi, 1< i< N, where f; = f(z;,t) and Uy, Un are zero if u(0,t) =
u(L,t) = 0. Letting U be the vector of the U; for i = 1,..., N, gives

_ 1 - - .
AU' + 33 BMU +CU = | (80)

where M = P® I,, I, is an n x n identity matrix, the same size as A, B,C and P is
tridiagonal with a = -l and b=c = 1.

Let ¢ be the evaluation map at the N interior grid points defined by e(p(z)) = [p(z1)7, ...,
p(zn)T]T. Note that ¢ depends on the (fixed) value of N and ¢(f) = f. For any positive
integer n there is a positive integer j and integer § with —N —1 < 3 < N + 1 such that
n=2j(N + 1)+ 3. A straightforward calculation show that

vg fN+1>08>0
5(¢n($)) = { —v)5| if —(N + 1) <p<0 (81)

0 ifp=0,-N-1
Thus €(f) = $321 9 © g5, 9s(1) = 521 (=17 fopquvany(t) and e(TiL; ws(t)¢n(2)) =
SN L vs ® ug(t). The solution U of (80) can be written U = YN . v, ® w,(t) where w, is
an unknown n-vector function. Substituting U into (80) and using the properties of the

Kronecker product gives

N N N

1 )
> v, ® Aw(t) + o > Pu, @ Bu,(t) + Y v, @ Cw,(t) = f. (82)
s=1 s=1

s=1
But Pv,v, = 5\3. Multiplying by the matrices viT ® I and using the orthogonality of the v,
which holds since they come from a symmetric matrix, we get finally the DAEs

1 -
A+ (SAB+ Oy =g 5= LN (53)

Notice that the approximation to the true solution using the first N modes under ¢ becomes
(N, pnui()) = SN, v, © ui(t) so that modal expansions of the solutions of the PDAE

n=1

are mapped to eigenfunction expansions of the MOL DAE. A calculation gives

—949 hsm 2.2
L L o S L O(RRCT) = N+ ORCTY, (84)

As = h2 E

1
h?
and R is independent of N. Thus for a fixed s, the term h=2}, converges as h — 0 to the

“eigenvalue” —AZ of the continuous case. However, the convergence is not uniform.

Several observations can be drawn from the above. First, suppose that PDAE has index

vy (based on a modal expansion). If the domain is close to a domain which would make
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the PDAE have index greater than v, then the MOL DAE might have index greater than
vg for some Az. Second, if the PDAE is index one, then the MOL DAE will also be index
one for large enough N. Third, if the pencil AA 4+ (7B + C) has the same index for all v,
then the PDAE and the MOL DAE will have the same index. Fourth, suppose that the
PDAE is index one for some L but that we have an L where it is index two. Then the MOL
DAE will always be index one for sufficiently large N. The reason is that in the estimate
(84) we actually have that A, — A, # 0. An analysis of the modal DAE will not correctly
reflect the index of the PDAE. Fifth, suppose that N is fixed. Suppose also that the DAEs
Aul, + (=A2B +C)u, = fn, n > 1, is index two for n = 2 but the other equations are index
one. Suppose that f(z,t) = 7(t)¢n+3(2). Then in the modal problem we have all the f; = 0,
and the solution is zero if g = 0. However, e(r(t)¢n+3(2)) = vo @ 7(¢) which is exactly the
same as if we forced the problem with r(¢)¢2(t). That is, the high frequency forcing of
problems with higher index low frequency modes could experience numerical difficulty with

MOL as if that low frequency mode has been forced.

4.1.2 MOL with Elements

Suppose now that our approximation is w(z,t) ~ Y N+14p;(2)Ui(t) where the ;(z) are
the scalar basis elements and the U, are vectors. Assume that the basis elements satisfy
Po(0) = 1, ;(0) = 0 for ¢ > 0, and ¢Yn41(L) =1, ¥:(L) = 0 for i < N 4+ 1. The boundary
conditions are incorporated by taking Uy = Uyy1 = 0. Let < 3,y >= fOL B(z)y(z)dz. The
element DAE is calculated from < Au; + Bug, + Cu— f,30; >=0,1 < i < N. Letting U
be the vector of the U; we get the DAE

(M ® A)U'+[-(S® B)+ (M@ C)U = f, (85)

where f is the vector of f; =< f,; > and Mij =< j, b >, Sij =< Y5, pf >, 1 <4, j < N,
The index of the DAE (85) is determined by the index of the pencil

{(M®A),-(50B)+(MeC))}. (86)

Proposition 4.1 Suppose that M~'S is diagonalizable. Then the index of the pencil (86)
is the mazimum of the indices of the pencils {A,yB + C} where v is an eigenvalue of
-M-15.

Proof. Suppose that —M~15 = QI'Q~! where T' is diagonal. Multiply the pencil on the
left by (QM~1)® I and on the right by @~ ® I to get the pencil {I® A,(T®@ B)+(I®C)}.
This is a direct sum of the pencils {A4,v;B + C'} where v; is an eigenvalue of —M~15. O
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If linear elements are used, M and S commute so that M~1S is diagonalizable. It is
possible that there exists other choices of elements for which M~1§ is not diagonalizable.
If this happens then there could exist PDAEs for which the MOL DAE given by elements
is higher index than the original PDAE was.

Let 7 (v) be the maximum (minimum) of the index of {A,aB+C}fora < 0. v <7
it is possible that the MOL DAEs using elements and differences can have different index
on the same PDAE. The MOL DAEs using elements can have different index for different

choices of basis elements.

4.2 Computational Examples

In this section we examine what happens computationally for some of the examples men-
tioned in the previous section. All computations here deal with the finite differences and the
MOL. The DAEs that arise from the MOL are integrated by a first order BDF (backward
Euler).

Example 4.1 Consider the PDAFE with coefficient matrices

L0 00 -2 -1
A:[o 0}’3:[0 1}’02[1 1} (87)

with L = n. The MOL DAE is indez one for all Az # /2. The modal (Fourier) DAEs are
indez one if j # 1 and index two if j = 1.

(a) Let f(x,t) = [t,t}7 sin2z. This solution should not excite any impulsive modes and

the computation gave a reasonable solution.

(b) Consider f(z,t) = [e~*,e~*]T sin2z. This problem has inconsistent initial conditions.
For the MOL DAE which is index one we theoretically get a jump condition. But the
PDAE actually has an impulsive solution in the u, variable. Figs.1 and 2 show the
solutions. Note that the index one MOL DAE is actually providing an approximation
for the PDAE which is really index two.

Example 4.2 In this series of computations we consider the PDAFE (87). This PDAE is
of special interest because the scalar index is higher than either the spatial index. The MOL
DAF is index two while the PDAE s index four. The difference is due to spatial derivatives.

(a) Let fi(z,t) = tsinz for ¢ = 1,2,3,4. Then u; = —tsinz, uy = sinz, v; = 2tsinz,
vy = tsinz. up = 0 is inconsistent so there is a jump at ¢ = 07. The solutions are

shown in Figs.3-6.
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MOL solution ut(x,t): dt=.02; h=pi/10 MOL solution u2(x.t); dt=.02; h=pi/10

.

ljllal ,[ | 'Illfljr'l("{!fln

.

i

I Ml r’||

Fig.1. 3D soultions of Example 4.1, part (b).
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ut(pi2,); dt=0.02; h=pi/10
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Fig.2. uy and up for z = /2,0 < ¢ < 1.
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ut{tx); dt=0.02; dx=pi/40

Fig.3. 3D solution for uy in Example 4.2, part (a)

u2(t,x); #1=0.02; dx=pi40

Fig.4. 3D solution for uy in Example 4.2, part (a)
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vi{tx); di=0.02; dx=pi/40

Fig.5. 3D solution for v; in Example 4.2, part (a)

va(t,x); #=0.02; dx=pv/40

Fig.6. 3D solution for v; in Example 4.2, part (a)

(b) Let fy = ta(z — 7). Then uy = 2t, up = tsine — ta(z — 7) — 2, v; = tsinz — 21,
vy = tz(z — 7). There are jumps at ¢ = 0,z = 7, and ¢ = 0% in different variables.
The 3-d solutions are shown in Figs.7-10, and the 2-d solutions for several time instants
and z € [0, 7] are shown in Figs.11-14. The inconsistency in the boundary conditions
is due to the z derivatives.
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ut{tx); #=0.02; dx=pif4d

Fig.7. 3D solution for u; in Example 4.2, part (b)

U2(t.x); Gt=0.02; dx=pild0

Fig.8. 3D solution for u; in Example 4.2, part (b)
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VI(LX); =0.02; dx=pi/d0

Fig.9. 3D solution for v; in Example 4.2, part (b)

v2{tx); dt=0.02; dx=pi/40

Fig.10. 3D solution for v in Example 4.2, part (b)
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45

3.5

25

uttix);, =0.02,0.4:0.8,1.2,1.6,2.0

T Y 1 Y T

5 10 15 20 25 30 35 40

Fig.11. u; at different times

w2(tix); 1i=0.02,0.4,0.8,1.2,1.6,2.0

5 10 15 2 25 30 35 40
Fig.12. u, at different times
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vi{tix); 1=0.02:0.4:0.8,1.2:1.6,.20

45+

5 N L L ) L L ) L
5 10 15 20 25 30 35 40

Fig.13. vy at different times

v2(tix); i=0.02,0.4;0.8;1.2,1.6,2.0

-6 L L i L L L i

5 10 15 20 25 30 35 40

Fig.14. v, at different times

(c) We take fy = fo = fa = (t — 1)sinz, fy = (¢t — )a(z — 7). Then u; = 2(t — 1),
uy = (t=1)sinz—(t-1)z(z—7)-2-6(t), v; = (t—1)sinz=2(t-1), v, = (t—Da(z—7).
Boundary conditions are inconsistent. There are jumps at z = 07, 2 = 7—, ¢t = 0%
in different variables. Impulse in uy is due to fy,. The solutions are shown in
Figs.15-22.
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ut{Lx); 4=0.02; dxepi40

8h b L o 4 N @
y ’ z

3
2
8
3
.
3
=3
8
s -

Fig.15. 3D solution for u; in Example 4.2, part (c)

u2{txy; =0.02; dx=pi/40

Fig.16. 3D solution for u, in Example 4.2, part (c)
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vi{Lx); =0.02; dx=pif40

Fig.17. 3D solution for v; in Example 4.2, part (c)

v2(t.x); =0.02; dx=pi/40

Fig.18. 3D solution for v, in Example 4.2, part (c)
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ut{tix); i=0.02,0.4,0.8;1.2,1.6,2.0

3 T 4 4 T T u T T

-1

_2t

.3 L L L L L ) L .

5 10 15 20 2 30 35 40
Fig.19. u; at different times

u2({tix); #=0.02,0.4,0.8;1.2,1.6:2.0

5 10 15 20 25 30 35 40
Fig.20. u, at different times
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vi{tix); =0.02,0.4,0.8,1.2,1.6,2.0
2 T v T T v T

05

-05

-15p
i . ‘ . . , . .
5 10 15 20 25 30 35 40
Fig.21. v; at different times
v2(ti,x); 1=0.02,0.4;0.8;1.2,1.6,2.0
3 T T T T T T T

-3 ¢ s L
5 10 15 20 25 30 35 40

Fig.22. v, at different times

(d) Let fs = (t—1)(¢ —7)(z+ 7). This produces an impulse in z. The solutions are shown

in Figs.23-30.
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ut{tx); #t=0.02; dx=pi/40

Fig.23. 3D solutions for u; in Example 4.2, part (d)

U2{Lx); t=0.02; dx=pi/40

20

Fig.24. 3D solutions for u; in Example 4.2, part (d)
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vi{tx); dt=0.02; dr=piid0

20

20 10

Fig.25. 3D solutions for v; in Example 4.2, part (d)

V2{tx); 0i=0.02; ce=pild0

Fig.26. 3D solutions for v, in Example 4.2, part (d)
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ultix); 8=0.02,0.4,0.8,1.2,162.0
10 T T v T v T T T

-10 ¢ L L . " : L 2
5 10 15 20 25 30 35 40

Fig.27. uy at different times

u2(tix); ti=0.02,0.4,0.8;1.2,1.6;2.0
100 T Y T T T T T

~100 L s . L L " L L

Fig.28. u, at different times
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vi{tix); i=0.02;,0.4;0.8;1.2,1.62.0

~100 " 2 . ) . . 2 .
5 10 15 20 25 0 35 40

Fig.29. v, at different times

v2(tix); ti=0.02,0.4,0.8,1.2;1.6;2.0

T T

T T Y

~10 L 2 L L 2
5 10 15 20 25 30 3B 40

Fig.30. v, at different times

4.3 Boundary Control Problem

The initial formulation of this boundary control problem is due to Orlov [25] . This infinite
dimensional problem has a well defined index. The whole problem is a mixture of differential,
algebraic and integral equations.

The problem is

U = uyy t2>0,0<z< [ (88a)
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u(0,t) = v(t) (88b)
w(l,t) = 0 (88¢c)

W) = [ ueopes (884)

We wish to consider y as a given or measured quantity and we are interested in the v, u
that produce this y. In this setting (88) is a type of PDAE in the unknown (u(z,?),v(?)).
Suppose we are interested in finding the index of (88). Note that if p(z) = §(z — %), then
(88) is the problem examined in [11].

We assume that p(z) > 0,0 < z < L and if we differentiate (88d) once with respect to ¢,
use the fact that u satisfies (88a), and then use integration by parts twice, then we obtain

L
V) = [ e Opa)s (89a)
= /OL Ua:a:(zﬂ t)p(:l:)dx (89b)
L
= Py, Ok~ P, Ok + [ u@ 0 @)de (300

Proposition 4.2 Suppose that k > 1 is an integer. Suppose that p is 2k times continuously
differentiable and y is k times continuously differentiable. Suppose also that

p0) = 0, i=0,..,2k-2 (90a)
L)y = 0, i=0,..2k-1 (90b)
pP0) = a#0 (90c)
Then
y B = —pPD0)u(0,0) + /OLu(z,t)p(”‘)(w)dw (91a)
= av(t)+ALu($,t)p(2k)($)dz (91b)
(91c)

and the system (88) has index k + 1.

Example 4.3 Consider the MOL approxzimation of the above boundary control problem.
The PDAE itself has index three but the MOL DAE is only index two. With y = et and
p(z) = 23(L — z)* we have that the PDAE has indez three but the MOL DAE has indez

two. The result is an impulse in . See Figs.31 and 32.
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hepi/a0; at=.05, POAE has index 3, p=x"3{L-x}4, y{t}=exp(t), init. cond.=0 for O<x<pi

-5

-10~

Fig.31. Solution u(z,t) in Example 4.3.

MOL soluion for control vit}={0,t); hepid0, dt=001, yit)=exp(t), it cond. =0 for Groxcpi
100~ . ; . , ( T r . .

8o+

-100 L i L L : L : X i L
5 10 15 20 2% 30 35 40 45 50

Fig.32. Boundary control v(t) in Example 4.3.

4.4 Travelling and Plane Wave Differential Algebraic Equations

In this section we shall consider the PDAE of the form

Aug + Buge +Cu = 0 (92a)
-0 < T < 400, 0<t<+00 (92b)
uw(z,0) = wuo(x) (92¢)

where A is singular and ug is twice differentiable.
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We define two different wave solutions for (92). We call them travelling wave and plane

wave solutions, respectively.

(a) Traveling waves

By the travelling wave solution of (92) we simply mean a profile u(z — st) translating
with the speed s in the (z,t) domain. Therefore, we assume that the solution of (92a), (92b)
with the initial condition (92¢) has the form u(z,t) = ug(z — st) for some s € R and all
z € (—00,+00) and ¢ > 0.

Next, we introduce the following definition of what we mean by the admissibility of the
travelling wave solution by system (92).

Definition 4.1 We say that system (92) admits a family of travelling wave solutions if
there ezist s; € R (not necessarily distinct), scalar, twice differentiable arbitrary functions
¢i(z), and constant vectors u; € R™, i = 1,2,...,m, such that u(z,t) = S, di(z — sit)u;
is a solution of (92a) for all z € (—o0,+00) , t > 0.

The above definition says that (92) admits a travelling wave solution family u(z,t) if
each component of the vector u(z,t) is either zero or a linear combination of functions
di(z —s8it),1=1,2,...,m.

Several consequences follow from the above definition. First, we do not restrict ourselves
just to one value of s € R (wave speed), but allow for multiple wave speeds. Second, if the
solution of (92) has the form given in Definition 4.1 for particular choices of ¢; and not for
all twice differentiable functions, then we do not consider that (92) admits travelling wave
solutions. For example, if (92) is scalar with A = 0, B = 1, C = 1 and ¢(z) = sin(z),
then the solution of (92) is u(z,t) = sin(z — st) for any s € R. This solution is in the
form wug(z — st) only because a special initial function, namely uo(z) = sin(z) was chosen.
Any other initial function gives nonexistence of the solution (excluding the trivial solution).
Therefore, we do not say that system u,; + © = 0 admits a family of travelling wave
solutions. On the other hand, f(z — st) is a solution of ug,; — s?uy = 0 for any f, so this

equation does admit traveling wave solutions for any s.

Proposition 4.3 System (92) admits a family of travelling wave solutions if there exists
s € R such that det(—sAA+ A?B + C) =0 for all \ € C.

Proof. For u(z,t) = ug(x — st) we obtain from (92a) a DAE: —sAuf, + Bufj + Cug = 0.

We can obtain all initial functions ug, i.e. an infinite dimensional family of solutions, if
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the DAE has nonunique solutions. That is, the DAE is not solvable. This is equivalent to
saying that d(s,\) = det(—sAA + A\?B + C) = 0. O

Example 4.4 Let

10 0 0 0 -1
A:[o 1}’32[—1 0}’02[0 0} (93)

Then for all A € C we have that det(—sAA + A?B + C) = 0 for s = £1 and the system

admits a family of travelling wave solutions with the wave speeds +1.
The following observations follow immediately.

Corollary 4.1 If detC' # 0, then system (92) does not admit a family of travelling wave

solutions.

Proof. For detC' # 0 we have that det(s,\) # 0 for A = 0. a

Corollary 4.2 If C'= 0 and (A, B) is a regular pencil, then (92) does not admit travelling

wave solutions.

Proof Without loss of generality we can assume that matrices A and B are in the form

1y, Ny,
A= Iy, , B= Ka, (94)
Nd3 Id3

where I and N are the identity and nilpotent matrices, respectively, K is in Jordan form
with non-zero eigenvalues at the main diagonal, and the subscripts d;, i = 1,2,3 denote
dimensions of matrices. Then det(—sAA + A2B) = (—sA\)1A2%117_ (—sA + 0;A?)™, where

q is the number of different non-zero eigenvalues {0y, ..., o,} of Ky, and r; is the algebraic
multiplicity of o;, 7 = 1,2,...,q. Therefore, d(s,A) can not be zero for 0 # s € R for all
AeC. O

Note : If we change equation (92a) to Auy + Bugy, + C = 0, then one can define travelling
waves and their admissibility in a siimilar manner to that for (92a). Properties of the
travelling wave solutions change for the new system, but generally one has to deal with
similar computational aspects. Let us mention the following two properties of the later

system.
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Corollary 4.3 If there ezist s; € R, 1 = 1,2, ...k, such that d(s;,\) = det(s? \2A + A\?B +
C) =0 for all A € C, then the system Auy + Buy, + Cu = 0 admits a family of travelling

wave solutions with an even number of wave speeds +s;, 1 = 1,2,....k.

Proof. Since d(s,A) is a polynomial with even powers of s, therefore, if +s; satisfies
d(s;,A) =0 for all A € C, so does —s;. |

Corollary 4.4 Let Auy + Buy, + Cu = 0 have regular pencil (A,B) and C = 0. Let
{61,032, ...,05} be real negative (finite) roots of det(c A+ B) = 0. Then the system admits a
family of travelling wave solutions with 2q speeds £/—a;, i = 1,2, ...,q.

Proof. If we use canonical form (94) for Auy + Bugz + Cu = 0, then d(s, A) = (sA)*% A%
IT{_,(s? + 0;)* A%, Therefore, d(s,\) = 0 for all A € C if there exists an i € {1,2,...,q}
such that s2 4+ o; = 0. Suppose ¢ = ¢ < g. Denote by {71, ..., 05} all those o's with negative
sign. The wave speeds are s; = +/—7;. 0

(b) Planar waves
In this section we formulate a different type of wave solution of (92a), the plane wave

solution. We assume that the initial condition u(z,0) is given in the following form
u(z,0) = peh® (95)

where z € (—00, +00).

Definition 4.2 We say that system (92) admits a plane wave solution, if there is a solution
u(z,t) = petAt+uz) (96)

forz € (—o0, +0), t > 0, and the solution is bounded for all (x,t) in the domain of interest.

We are interested in finding conditions under which (96) is a bounded solution of (92a).
Note that in order to get bounded u(z,t) we need to restrict p to be a real number. The A

can in general be a complex number with Im(A) > 0.

Proposition 4.4 If (92a) admits a plane wave solution (96) that depends continuously
on the given initial condition (95), then % and 1 are the non-zero eigenvalue and its

corresponding eigenvector associated with the pencil

{A,—B + %} (97)
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such that Re(%}) < 0. Moreover, if A = Lo and B = By By with detBy # 0,
H 0 0 B3 By

then the problem has a solution provided
A . . :
oz =Pt (e +iu(n) (98)
where p+ iq is an eigenvalue of By — BoBy ' Bs, p < 0, and r*(u) + u®(u) — 0 as |p| — oo.

Proof. Substituting (96) into (92a) gives (Ai\ — Bu? + C)n =0, so s = iA/u® is a root of
det(As — B+ C/p?) = 0 and 7 is the corresponding eigenvector. Condition Re(iA/u?) <0
follows from (95) and the fact that we are looking for a bounded solution of (92a). If
|#| — oo and A, B have the forms given in the proposition, then det(4s — B + C/u?) has
the same degree as det[s] — (B; — ByB; ! B;)] and with the assumption that for large ||

coefficients are continuous in 1/p? (i.e. lim),_ 0 (iA/pu?) exists) we have
limy,|—.codet(As — B + C[p?) = det[Is — (By — By By B3)]detBy (99)

which yields ¢A/u? = p+iq, where p+iq is an eigenvalue of By — B2B;1 Bj. The eigenvalue
of a matrix depends continuously upon the coefficients of the matrix. Therefore for any
|| # oo we obtain (98) with r(x) and u(y) depending on the matrix C. Note that as
1| — oo, then r2(u) + u?(p) — 0. From (95) we have |u(z,t)| = |n|e*+7(®1¥*t  In order not
to magnify |n| for large ¢ and upon continuous dependence of the eigenvalues on parameter
1 we conclude that p must be nonpositive. |

Note: If p = 0, then |u(z,t)] = |n|e"®#*t which shows that matrix C is of importance
(Example 4.5 below). If p = 0 and C = 0, then system (92a) will always admit bounded
solutions for consistent 7 since then A will be real and equal (¢+u(p))u? (Example 4.6). Note
also that there is a direct correspondence between our approach and the modal (Galerkin)
DAEs. The plane wave solution relies on the pencil (A, —B + C/u?) (or equivalently on
(A,—p’B + C) if s = i) is used instead of iA/x?). In the modal analysis, if the boundary
conditions implied a zero eigenvalue, then the pencil (A, C) was of interest, just like pencil
(A,C) in the plane wave solution if p = 0.

Example 4.5 Consider system (92a) with A = [ é 8 ] , B = lli [ _01 _11 ] and C =

0 1
r(p) = 4—_—_1?5, g =0, and u(p) = 0. Since p is negative, therefore the system admits a

plane wave solution. Note that By — BQB;'IBg = —-}:, sop = —;11- is an eigenvalue of

B; — B,B; ' Bs.

{ 00 } Then det(As — B + C/p*) = 0 gives s = iX/p? = —% + ﬁg, ie. p= -1,
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0 -1 1 0 1
det(As — B + C/;ﬂ) =0 fors= }117 = % Since By — By By 1B, = % we obtain p = 3
qg=0,r(p) = —}—;; and u(p) = 0. If 60 =0, then p =0, A = i and |u(z,t)] = |n|e~t. This
solution is bounded, so the system admits a plane wave solution. Changing the (1,1) entry

Example 4.6 Let A = [1 }, B = [ 0 }, C = [1 }forﬂ € R. Then
1
e

of C' to —1 yields A = —i and |u(z,t)| = |n|e’, which is not acceptable for any 1.

10
Example 4.7 Let A= | 0 1

0 0
p=0,¢= =1 and t(p) = w(p) = 0. Therefore X = £p® and (96) is admissible for
satisfying (j:A;i; — By =0.

, B =

o oo
< O

01
0 01} and C = 0. Then%:iiand
11

4.5 Equilibria and Their Stability for DAEs

Let us analyze what must to be taken into account when linearizing (1) around its equilibria.
We restrict ourselves to time invariant DAE. 7 is an equilibrium of F(y’,y) = 0 if and only
if F°(0,y) = 0. If F,(0,7) is nonsiagular, then ¥ is isolated and can in principle be found by
solving F'(0,7) = 0 by a numerical or symbolic method.

The invertibility of I,(0,7) is important in another way. The following lemma is used

in the subsequent theorem.

Lemma 4.1 Suppose that A and B is a regular pencil of matrices, that is, det(AA + B) is
not identically zero. Then \ = 0 is an eigenvalue of the pencil if and only if det(B) = 0.

Proof.  The eigenvalues of the pencil are those A such that det(AA + B) = 0. If 0 is
an eigenvalue, then det(B) = 0. Conversely, we note that since the pencil is regular there

are invertible matrices P, Q such that PAQ = (1; ](3, , PB@Q = [ 10) ? where N is a
nilpotent matrix of index k. Thus det(AA+ B) is a constant multiple of det(AT+ D)det(AN +
I) = det(AI + D). If D is singular, then det(AA + B) = 0 for A = 0. O

Theorem 4.1 Suppose that § is an equilibrium of F(y',y) = 0. Suppose that the DAE
satisfies (A1)-(A4) in Definition 1.4 in a neighborhood of (0,7,0). Let A = F,(0,7),
B = F,(0,7). Suppose that B is nonsingular. Let y be n dimensional and r be the difference
in rank of [Gy, Gy] and [Gy, Gy, G,) for this system at (0,7,0). Then

1. The local linearization Aj'+ By = By and the original DAE F(y',y) = 0 have the same

dimensional solution manifold in a neighborhood of 7.
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2.y =7 +0(ly-7).
3. The dimension of the solution manifold is n — r.

Thus if the pencil \AA+ B has n — r finite eigenvalues with nonzero real part, then they will
determine the stability properties of § on the solution manifold of F(y',y) = 0.

Proof. Items 1 and 2 are from [8]. They imply that the eigenvalues of the pencil will
determine the stability of the equilibrium provided the number of nonzero eigenvalues with

nonzero real part is the same as the dimension of the solution manifold. Item 3 is from [9].

The final conclusion now follows. O
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5 Travelling Waves, Conservation Laws and Nonlinear Dif-
ferential Algebraic Equations

5.1 Preliminary Remarks

There has not been any substantial research reported on the application of DAE theory to
the analysis of nonlinear infinite dimensional systems of conservation laws. One may expect
enourmous difficulties associated with attempts to create a unified approach to this problem.
Extending the results from linear to nonlinear systems usually requires some assumptions
on the nature of the nonlinear problem, initial and/or boundary conditions, etc. Therefore
in this section we will consider a particular nonlinear system, namely a nonlinear system of
conservation laws and a special initial value problem, the Riemann problem. This problem
is application oriented and the particular area of possible applications include gas dynamics,
elastocity and magnetohydrodynamics [34], [35], [36], [37], [46], [47]. There is a close relation
between travelling wave solutions in these areas and shock wave formation. However, we
are not considering this relation in this thesis. Our traveling wave solutions in systems of
conservation laws are smooth solutions. This will allow us to use the index theory of DAEs
with smooth solutions as discussed earlier in section 3.1. Let us here only mention the
simplest possible relation that exists between traveling and shock solutions for a relatively
simple p-system (proof of the result can be found elsewhere (27], [46]).

Theorem 5.1 The p — system of conservation laws

U —v, = 0
vetpu)y = 0

with p < 0, p” > 0 admits a Laz shock if and only if there is a travelling wave solution
{40} = {£,9}(x — st)/ 1) for the system

u—-vy; = 0 (101a)
v+ p(U)e = pUugy. (101b)

The number s is called the wave’s speed.

In this chapter we analyze only continuous solutions of (101) and other similar systems
introduced later on. Note that we have not yet discussed what is meant by the travelling
wave solution of the nonlinear system. We mentioned the above results just to indicate
how important the problem of finding travelling waves may be. The level of difficulty rises
when more complicated systems are considered. Such examples include the system of 3
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equations of conservation laws in gas dynamics [46], system of 7 equations in elastocity
[35], and system of 7 equations in magnetohydrodynamics [47]. Another related example,
although not a system of conservation laws, is a system of 5 nonlinear equations in hy-
poplasticity [37]. The problem of the existence of the travelling waves in all these areas
is very important and mathematically nontrivial. In this section we will derive the DAE
models of the travelling wave solutions in two important nonlinear systems of conservation
laws. The first model describes the conservation laws in gas dynamics and the second model
deals with magnetohydrodynamics. It is shown that the travelling wave solutions lead to
an algebraic system of nonlinear equations for computation of the wave speed values and
a DAE for computation of an orbit connecting the given two equilibria. Our derivation of
DAE:s is based on traveling wave solutions with constant speed s only. No other traveling
waves (such as, for example, rarefaction waves) are considered in this thesis.

5.2  General System of Conservation Laws

We consider the following system of conservation laws
u + F(u), = [B(u)ug), (102)

where u(z,t) € R", F(u) € R is smooth in a neighborhood N of R and the Jacobian
dF(u) has n real and disctinct eigenvalues in N. Matrix B(u) is always real and in most
cases singular with its entries depending on the viscosity coefficients, thermal conductivity,
electric resistivity, etc. These coefficients, if included in the system of conservation laws,
change the nature of system (102) from the hyperbolic (B = 0) to parabolic (B # 0).

Definition 5.1 We say that system (102) admits a travelling wave solution if there exists
s € R and v ,u! € R such that u(z,t) = u(x — st) for (z,t) € R™ x R*, u satisfies (102),
and limy_,_ou(p) = o, limy s poou(¥) = u™, and limy o0t/ (¥) = 0, where ¢ = ¢ — st.

In this thesis only smooth solutions of (102) are considered. The above definition of the
admissibility of the travelling wave solution was used in the Theorem 5.1 above. The
importance of this definition is now obvious, since it links the solution of a parabolic system
of conservation laws to that of hyperbolic systems and its shock wave solution. The link is
through the Riemann problem for the system ut+ F'(u); = 0 for which the initial conditions
w(z,0) = v if 2 < 0, and w(z,0) = " if z > 0, are assumed. Note that u” and %' are given
equilibria for the solution w(s). T herefore, the above problem is equivalent to the problem
of connecting the two equilibria by a heteroclinic orbit.
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In definition 5.1 and throughout this thesis we are interested in the traveling wave
solutions with a constant speed s. As a result, the DAEs that are obtained are nonlinear
autonomous DAEs. The wave solutions with time or space dependent wave speeds, such as

rarefaction waves, are not considered in our analysis.

Although the definition 5.1 is formulated for a nonlinear system given by (102), one can
consider analogous definitions for the linear form of (102), i.e. systems of the form

Let us examine the admissibility of the travelling wave solution for system (103) with
singular B. Introducing u(z,t) = u(z — st) into (103) we obtain

su'+ Bu" + Cu' =0 (104)
Integrating (104) once from u' to any u we get
s(u——ul)+C(u——u1)+Bu' =0 (105)
Since u” is an equilibrium, therefore from (105) we have
s(u" —u)+ C(u" — u')y =0 (106)

Denoting ¢ = u™ — u! we obtain that Eq =0, where E = Is + C. There exists a nontrivial
solution of this equation if and only if the wave speed s is a finite eigenvalue of the pencil
(I,C) and q € ker(Is+ C). If we want to find an orbit connecting u' with u”, then we need
to solve a DAE (105), which can be rewritten as

By + Mu = Mu (107)

where detB = 0, M = Is+ C (s is assumed to be known). (107) is linear and its particular
solution is Uy = u!. Now Bu' + Mu = 0 is a constant coefficient DAE. It has no solution
with «' and «" as limits except u = 0. If u' = 4" then we get the trivial, constant solution

l}

u(z — st) = u'. Hence there are no nontrivial traveling wave solutions in linear constant

coefficient systems. We will show shortly that the same problem in nonlinear systems has

different answer.

If u = u(x ~ st) is to be a solution of (102), then substituting this solution into (102)

we get
—su' 4+ F(u) = B(u)u" (108)

Integrating (108) once from the assumed equilibrium ' to any state u, we obtain

~ su+ F(u) + sul — F(u')y = B(u)u' (109)
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Hence the nonlinear travelling wave DAE has the following form
B(u)u' + M(u) = M(u') (110)

where M(u) = su — F(u) and the s is computed from the algebraic equation s(u” — u') -
F(u")y + F(u') = 0.

Note that the later equation is the well-known Jump condition (or Rankine-Hugoniot
condition) for the existence of the shock solution in non-dissipative system u; + F(u), = 0
[46]. Thus the wave speed s is determined by the left and right equilibria. A type of converse
holds.

Theorem 5.2 Fiz u'. Suppose that there ezists a solution 4 of the DAFE (110) which con-
nects equilibrium u! with the equilibrium u™ with wave speed 5. Suppose that the assumptions
(A1)-(A4) in Definition 1.4 hold for (110) in a neighborhood of i and u', u" and for s near

S.

1. If =8 4+ F'(u") is nonsingular, then for s near § there will be a right equilibrium u”(s)
and a solution of (110) connecting u' to u”(s).

2. Suppose [—3+ F'(u"), u” —u'] is invertible when its ith column is deleted. let § be the ith
component of u”. Then there will exist a new right equilibrium u”(6) with this same
ith component and a solution connecting u! and a"(6) for a wave speed s(8) near .

Proof. The proof is a straightforward application of the implicit function theorem and
standard ODE theory, once we see that the assumptions (A1)-(A4) holding as s varies
ensures that the solution manifold has fixed dimension and also varies smoothly with the
chosen parameters [6], [10]. a

At an equilibrium %, the linearization of (110) yields the pencil

B(@)A + sI - F'(w). (111)
Note that equation (102) includes the form

U+ Fu)y = b(u)yy (112)

by letting B(u) = b'(u). However, (102) is more general since not every B(u) can be written
as b'(u) for some b(u). The DAE (102) could also be written as a semi-explicit DAE by
letting v = «’ but that would increase the index by one [1].
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5.3 The p-system

Consider the travelling wave solutions (u,v)(z, t) = (u, v)(z — st) of the p-system given in
Theorem 5.1. Integrating the system along the travelling wave solution between (!, v') and
a general state (u, v), then substituting (u,v) = (4", v") one obtains

—s(u" —u) - (v =) = 0

=s(v" = o) 4+ p(u") = p(u!) = 0

This gives the possible wave speeds

s= i\/?—("%:—’l’flﬂ (114)

If u” > u' then we must have p(u’) < p(u!). Otherwise, if u” < u! then p(u") > p(uh).
Equation (110) has the following form

I s by ot
[ ,2 g ] [ 1; ] + [ svi;{;) ] - [ sjlu—;(ul) J (115)

The matrix pencil (111) gives that the eigenvalue at an equilibrium is A = P'(u) + s2.
Note that A # 0 precisely when det(s] — F'(u)) # 0 as promised by Theorem 5.2.

What is required in order to get the required traveling wave with two equilibria whose
stability is determined by the linearization? One can transform (115) into a scalar equation
in v only, i.e. v = f(v,s,u,v",u!) which is solvable under the restriction imposed on p
in Theorem 5.1. Then u is obtained from the first equation in (115). Since the solution
manifold is one dimensional, in order to get a trajectory from ' to u” we must have u' is
unstable and u” is stable. This can only happen if ' (u')+ s > 0 and P(u")+ 5% <0.

5.4 Gas Dynamics

The gas dynamics equations in the Eulerian coordinates take the following form [46]

pt+(pw), = 0 (116a)
(pw)e+(p+ pw?). = 0 (116b)
(PGu?+ et {pwlbu? +e)+po), = 0 (116¢)

where p (pressure) and e (energy) are some nonlinear functions of p (density) and T (tem-
perature). The p, w (velocity), along with 7 are considered as dependent variables. It is
easy to see that with u = (p, w,T)T € R® one can transform system (116) into (102) with
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B(u) = 0. If we introduce the viscosity coefficient # > 0 and the thermal conductivity
coeflicient k>0 into system (116) then we obtain

hpi+ (pw), = 0 (117a)
(pw)e+(p+ pw?)s = pwy, (117b)
{p(%w2+e)}t+{pw(%w2+e)+pw}x = p(wwe)s + kT, (117¢)

System (117) can be written in the general form (102) with B = J~1E, and

0 0 O 1 0 0
E=10 p 0}, J= w p 0 (118)
0 pw &k %wQ +e+pe, pw per
Obvious calculations yield
0 0 0
B=10 u/p 0 (119)
0 0 k/per

If (p,w,T) = [f((z — st)/u), g((z — st)/u), h((z — st)/u)], then we obtain a second order
system of ODEs from (117). This system when integrated between some left state u! =
(f',¢', k") and genral state u gives

=s(f =)+ f9—(fo)) = 0 (120a)
-s{fg - (o) +p+fo* - {p+ fo?} = ¢ (120b)
—sUGo*+ ) = LG + Ol + fa(3a? +o)

1 k
~{f9GG* + &)Y +pg— (pg) = gg'+ =N (120¢)
or more compactly B(u)u' + M(u)u = M(u') with
0 0 0
Buy=10 1 0 (121)
0 ¢ ﬁ-

Note that if we denote u = (h,g), v = f, then (120) can be written in the form

Flu,u',v) = 0
G(u,v) = 0,

where 0F/0u' = [ ké,u g J, and G /v = —s 4 ¢.
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11pt Smilarly as in the case of the p — system above, we have here the following system
of three nonlinear algebraic equations for the computation of the wave speed ((120) with
zero tight hand side)

~s(fT =+ g -1d =0 (123a)

=s(f"9" = f')+ " =P+ f1(gD) - fl (¢ = o (123b)
UG + ) = G+ + (e + e

G ) Hrg —pg = 0 (1230

where e and p are functions of the descriptor vector u = (f, 9, h)T.

The above system is used to compute the wave speeds. Having obtained the values of
speed s we proceed to compute the orbits connecting «” and u'. To do this we need to solve
the DAE

B(u)u' + M(u) = M(u') (124)

with u(o0) = u,, B(u) given by (119) and

sf—fg
M(u) = sfg—p—fg* (125)
sf(39° + )~ fg(ig> + ) — pg

The Jacobian of this DAE depends on u, more precisely on one of its elements, namely g,
but the rank of the Jacobian is constant and equal 2 if & # 0. If k£ # 0, then the system
has index 1 provided that the gas velocity (represented by g) is not equal s (wave speed).
The dimension of the solution manifold is 2. If ¢ = s, then the system has higher index
depending on functions p and e (i.e. on the type of gas). If k = 0 and ¢ # s, then the index
is still 1, but the dimension of the solution manifold is 2.

Example 5.1 Consider system (117) with p = RpT, e = e, T, and suppose we are looking
for the travelling waves connecting the left state u' with the right state u” with the wave
speed s = 1. Suppose also we know some components of u} and u", as follows: p(—oc) =1,
p(+00) = .5, and w(—oc) = 5. Let R=c, =1, and k= p =1 in (116). If we use (123)
above to compute the remaining components of u' and u” then we obtain: w(400) = 0,
T(-c0) = 0.3125, and T(+o0) = 0.125. Thus, the two equilibria in (120) are: (f',¢',h!) =
(1, 0.5, 0.3125) and (f",g",h") = (0.5, 0, 0.125). Solving system (124) with the initial
conditions g(0) = ¢' and h(0) = k' and calculating f from the first equation in (120) we
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obtain the solutions shown in Fig.33. The 3D plot of w(x,t) and the respective contour plot
are given in Fig.34 and Fig.35, respectively.

@ hand { as functions of hheta
T T T

Fig.33. Traveling wave solutions.

3D plot of wix.t)

Fig.34. 3D solution for w.
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The contour plot of w(x,f}

251

201

T
X {space)
Fig.35. Contour lines for w.

The solution of the same problem but with & = 0 (i.e. one dimensional solution manifold)
is shown in Fig.36 which presents the solution for (f(8), g(8), h(8)) between the left equi-
librium (1, 0.5, —3.025) and the right equilibrium (5, —3.9, 4.235) with the wave speed
$ = —b.

9. f and h as functions of theta
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Fig.36. Traveling wave solutions (k = 0).
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5.5 Magnetohydrodynamics
5.5.1 The MHD Equations

The MHD system of 7 nonlinear equations describes the flow of a conducting fluid in the
presence of a magnetic field. The equations describe changes in the magnetic field, electric
variables and the hydrodynamic variables. In general, the fluid dynamic equations are
coupled with Maxwell’s equations describing the electromagnetic effects in the system. The
study of MHD has progressed first through hydrostatics, hydrodynamics, a study of steady
flows of incompressible fluids, discussion of sound waves and stability of laminar flows, to
the more modern problems of high speed compressible flow and turbulent motion.

The MHD problems can be placed both in theoretical and applied frameworks. The theo-
retical aspects include idealized problems in astrophysics and geophysics, such as discussions
on magnetic storms, solar winds, cosmic magnetic fields, magnetic fields of sunspots, and
analysis of the Earth’s magnetopause during magnetic reconnection process [48],[23]. In all
these cases the most important part of the work lies in formulating a mathematical model
which describes the more important aspects of the problem [23].

The applied framework on the other hand emphasizes application and analysis of the
MHD models in the fields of nuclear physics and engineering, as well as space research [24].

The dissipative MHD equations with resistivity, viscosity, and thermal conductivity have
the following form [48]
dp
ot
9(pv)
ot
0B

at
oE
ot

In the above, p ,p,v, and B denotes the mass density, pressure, velocn;y, and magnetic

= V.(pv) (126a)

= —V(pvv+I(p+———)—-BB)+VV2v+(,u+ )V(Vv) (126b)

-VxE (126¢)

= _v(( +———+p)v+ExB)+\70'V+HV2() (126d)

field, respectlvely 7 is the ratio of the specific heats, the energy density E is given by
E= L + =3 B +p/(y=1), v =[|v||, B = ||B|| and the electric field is described by Ohm’s
law 77.] E+v X B,J =V xB,and 5 = const is an electric resistivity. v and { are the two
coefficients of viscosity, and « is the thermal conductivity. Additionally, we have V.B = 0.

If we consider one-dimensional flow only, e.g. in z direction, then 55 = 82 =0,B =
(B”,By,Bz)l with B® = const and BY, B* are functions of z and t. Therefore we can

rewrite (126) in the one-dimesnional case as follows [48]

pit(pu) = 0 (127a)
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(pu)e + (pu* + P = (p+ 3V)ua:z (127b)
(pv)e + (puv — B*BY), = wvu,, (127¢)
(pw)e + (puw —~ B*B*), = vw,, (127d)
BY + (BYu - B®v), = nBY, (127e)
B + (B*u- B*w), = yB, (127f)
Ee+[(E+ P)u—B*(B*u+ B+ B'w), = (u + v)(5 )w + V( )xz
(By)2 + (B*)?
+n(£)w (127g)
where P* = p 4 2||B||?, E = ip|lv|? + 55 + 3BI% v = (u,v,w)T is the velocity

vector, B = (B*, BY, B*)T is the magnetic ﬁeld p, P, E, v denote density, static pressure,
energy and ratio of specific heats, respectively, and 7, K, and p,v are resistivity, thermal
conductivity and two viscosity coefficients, respectively. The later four coefficients are

constant.

If the system (127) admits traveling wave solutions
UT = (P7 u,v,w, By’ st E) = (ul’ U2, U3, Ug, Us, Ug, U7)($ - St) (128)

then we obtain the following DAE for the descriptor vector u

—sui + (wug) = 0 (129a)

—s(uruz) + (wuj + P*) = (u+ 3l/)u (129b)
—s(u1uz)’ + (vauguz — Bus) = pult (129¢)
—s(uruq) + (vruoug — B¥ug) = vuy (1294d)
—sug + (ugus — B®uz) = nul! (129e)

—sug + (uoug — B¥uy)' = nug (1291)

—suf + ((u7 + P*)uy — B*(B%u3 + usus + uqug)] = (n + )( )

+u ul + ud
‘l‘V( 32 4)/I+n( 52 6)/.’

+r( Ly (129g)
T
If we integrate system (129) once with respect to ¢ = z — st, and use the fact that the
derivative of u is zero at at the left state, then

~s(uy —ud) + ugug — (mup) = 0 (130a)
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—slugug — (wyuz)'] + wyul + P* — (uyul + P*)

—sluruz — (u1u3)'] + wyugus — B¥us — (v1ugus — Bus)!
—s[urug — (wyug)'] + wyuguy — Bfug ~ (uyuguy — BIU6)I
~s(us — uk) + ugus — B¥uz — (ugus — BZug)!

—s{ug — ué) + ugtig — B uy — (ugug — Bxu4)1

—s(uz — ub) + (u7 + P*)uy — B*(B*uy + usus + uqtg)

—[(u7 + P*)uz — B*(B%uz + uzus + uqug))'

4
(e + gl/)ug (130b)
vug (130c)
v, (130d)
nug (130e)
nug (130f)

4 u% ,
(4 (2

2., .2 2
+V(u3;u4)/+n(u5;u6)l
+r( Ly (130g)

(31

where B® = const, and the static pressure is generally a function of the components of u,

ie. p=pu).

Thus (130) is a system of 7 nonlinear DAEs of the form G(u)u’ + M(u) = M(u') with

the singular Jacobian G(u), as follows

[0 0 0 0 0 0 0 ]
0 p+3vr 0 0 0 0 0
0 0 v 0 0 0 0
Guy=| o 0 0 v 0 0 0 (131)
0 0 0 0 7 0 0
0 0 0 0 0 n 0
| e1(u)  ao(u)  as(u) ay(u) as(u) as(u) ag(u) |
with
a(u) = nw—g_—p (132a)
Uy
4 Puy
ax(u) = (p+ -v)ug + k=2 (132b)
3 Uy
as(u) = vus+ KIZL:; (132¢)
1
agu) = vuy+ nl;ﬁ (132d)
1
as(u) = nus+ m%ﬁ (132e)
1
ag(u) = nug+ fc];ﬂ (132f)
1
ar(u) = B (132g)
(31

where p,, is the derivative of p(u) with respect to u;, i=1,...
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5.5.2 A Few Comments on the MHD DAE

The properties of a traveling wave solution of a nonlinear system of conservation laws in
magnetohydrodynamics given above are here summarized from the point of view of differ-
etial algebriac equations. We consider several particular cases of the traveling wave MHD
DAEs. The nonlinear system of 7 PDEs describing the relations between electromagentic
and hydrodynamic parts is considered in the one-dimensional setting with z denoting the
spatial and ¢ the time variables. The dependent variables are density p, 3 components of
the velocity vector (u, v, w)?, 2 components of the magnetic induction vector (BY, B%)T and
energy F. All those variables are functions of z and t. The B® component of the magnetic
field is constant due to the requirement that VB = 0. Also, the special, so-called planar
case of the above system consists of only 5 equations since B* and w are equal zero.

The MHD DAEs are closely related to the Riemann problem for the PDE system (127)
with zero right hand side. The Riemann problem is an initial value problem in which we
are looking for a solution of u; + f(u), = 0 between two states, the so-called left and right
states. That is, the initial condition is: u(z,0) = u' for < 0 and u(z,0) = u" for z > 0.
It turns out that under mild conditions this problem is equivalent to finding the traveling
wave solution in variable § = 2 — st with s denoting the wave speed for system (127)
with non-zero right hand side. Historically, the first approach to the Riemann problem
was based on discontinuity theory in which the problem is solved provided certain jump
conditions (the Rankine-Hugoniot conditions) were satisfied for the hyperbolic system of
nonlinear first-order equations [46],[47]. Next, the continuous approach was used in which
the dissipative terms were taken into account. The limit of the soulution of such dissipative
system is called the viscosity solution of (130). Such a limit is a weak-star limit in L% and
u is a piecewise C'! solution containing a single shock. The convergence is uniform off of any
neighborhood containing the shock. The idea behind adding the viscosity terms is simple.
All real physical systems always have some kind of dissipative mechanism that is modeled
by second order derivatives, like u,,. This is particularly true in magnetohydrodynamic and
gas dynamics problems, where any fluid or gas has at least "small”, but nonzero, electrical
resistivity or a nonzero thermal conductivity. These issues are only mentioned here. The
main focus of our research is on the relation between DAEs and traveling wave solutions
rather than the analysis of shock solutions. Our goal is to use the DAE theory to study
properties of traveling waves and related topics such as singularities of the MHD DAEs,
bifurcations in DAEs and their structures (semi-explicit and conservative DAEs).

The system of conservation laws with viscosity coefficients becomes a parabolic one
and the corresponding finite dimensional DAE (i.e. (130) with the independent variable
§ = z — st) has the left and right states as its two equilibria.

Note that the viscosity approach uses the second-order system (due to the dissipative
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mechanism represented by constants 7, i, v, and « in (127)), but the final system (say,
travelling wave system) (130) is a nonlinear DAE.

There are several reasons to believe that one can benefit from using the DAE approach
for analyzing the travelling wave MHD system. First, the MHD DAEs come from the
parabolic (dissipative) PDEs and parabolic systems are usually easier to solve than the
hyperbolic ones (used by the discontinuity method). Therefore one may prefer working
with parabolic systems rather than hyperbolic. Second, one may also benefit from using
the DAE approach when trying to explain the physical properties that stand behind the
results. The DAE theory has positive results regarding stability analysis of equilibria on
the constraint manifolds [39],[43], bifurcation analysis [41], [42], numerical methods [1], [2],
(28], [38], etc. We shall show that one can link several particular results known in the
theory of magnetohydrodynamics with such notions of DAEs like indez, impasse points,
singular points, etc. There are cases in the MHD (see eq.(148) below) where the whole
MHD system can be described just by one DAE system with all the necessary equilibria,
instead of two ODE subsystems, each on a separate branch of the constraint manifold (the
so-called subsonic and supersonic branches). Third, and perhaps the most important reason
for using the DAE approach is due to the recent results which show that the discontinuity
theory (i.e. MHD system without dissipative terms) can not identify all possible shock
solutions that may occur. Instead, it was shown in [47],[48], mainly by several numerical
experiments, that intermediate shocks can physically exist if small but positive constants
7, 4, v, and K are taken into consideration. It was long believed that the intermediate
shocks were nonphysical, since certain jump conditions in the discontinuity theory were not
satisfied. The numerical examples with the dissipative systems like ( 127) show that this
belief was not correct. This gives one more reason why the use of MHD DAE (130) to
analyse the shock structure may be superior to the discontinuity approach. Therefore, it is
our belief that in the future research on the application of DAEs to systems of conservation
laws, one may develop the DAE based tools to determine whether certain types of shock
solutions are or are not acceptable. The formation and structure analysis of the intermediate
shocks in MHD rely, at least at the current stage of research, mostly on numerical rather
than analytical results [48]. Our only intention is to point out the possibilities that may
exist when one links DAEs and shock solutions in systems of conservation laws together.
The more detailed analysis is beyond the scope of this thesis.

Since our DAE approach to systems of conservation laws is based on the viscosity method
(i.e. the continuous approach) and since the viscosity method seems, as described above
and urgued elsewhere [47],(48], to have advantage over the discontinuous approach, it may
happen in the future that the DAE theory becomes a powerful tool that can be used in many
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analytical proofs in the large area of MHD problems. Finally, in the numerical examples
presented in this chapter we have used the dissipative coefficients, such as u, v, 5, x and
other constants, such as y and B* found in the existing literature on this topic, e.g. [23],
[24],[48].

5.5.3 Basic Properties of the MHD DAE

Let us first analyze the existence and number of possible equilibria in the MHD DAE (130).
We consider (130) with the zero right hand side, and we assume that all components of the
left state and the value of s are given. Note that as described above the left state is an
equilibrium of the system. Then the following result holds true.

Proposition 5.1 If the wave speed and all components of the left state are known, then the
MHD DAE (130) can admit at most 4 different equilibria (including the left state).

Proof.  One can show (e.g. by using symbolic calculations with MAPLE) that the 7
algebraic equations in (130) can be transformed into a 4th degree polynomial equation in
one of the components of the right state (e.g. u}). Such a polynomial equation has at
most 4 real solutions (e.g. 4 different values of uf), and the rest of the components of the
right state are functions of the particular component involved in the polynomial equation.
A MAPLE code used to prove this is given in Appendix I. d

Proposition 5.2 The real roots of the polynomial

pus) = (aud + bud + cug + d)(ue — ub) (133)
with

a = (B")[(ug)® + (ug)’] (134a)
b= ugl(ue)® + (ug)*I[ui(2 — 7)(s — u§)? + (B*)*(y - 1)] (134b)
c = —[(B")? - (up)’uyle” (134¢)

¢ = (Y (U2 = )+ (= ) (YR + ()P + ()] = (o )?)
—(B*)*(v* + 1) = 2yuz(1 - 7) (134d)
d = —(ug)’(y + 1)[(uy - s)*uf — (B*)?? (134e)

are the values of ug at the equilibria of of the traveling wave MHD DAE. Other components

of u are functions of ug.

Proof. Factor out common terms in the coefficients of the polynomial equation in Propo-
sition 5.1. d
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Note how various components of the left state and parameters v, B%, and s influence
coefficients a, b, ¢ and d as well as the number of equilibria of the system. The ul is a
component of the left equilibrium. Several special cases follow. If we assume that

(B*)?

uh—s =+ ; (135)
Uy

then ¢ = d = 0 and p(ue) = ul(aus + b)(ug — u4). We have three roots: u§ , —ul (= —b/a),
and 0 (double root). Variable u; has the meaning of velocity and the right hand side in the
last formula is known as the speed of the Alfven wave [46].

fond 43

a ?

If u§ = 0, then b = d = 0 and we have double root ug = 0 and two roots ug = £
provided c/a is negative. On the other hand, if u} = u§ = 0 (two components of the

magnetic firld are zero), then @ = b = d = 0 and the only roots are 0 (single) and u§.

As mentioned above one of the most important issues in the Riemann problem is the
possibility of connecting of various equilibria via travelling waves. The equilibria of the DAE
(132) are the left and right states in the Riemann problem. Therefore the components of
u' and u” in (132) are exactly the same as in the initial condition: u(z,0) = u for z < 0
and u(z,0) = 2" for z > 0 for system (127).

Although the system (132) can admit 4 equilibria, not all possible pairs can be regarded
as the equilibria of the Riemann problem. This is due to the fact that some of the equilibria
may lie on different parts of the constraint manifold and no smooth connection between
equilibria can be made. In general, there are two reason for that. First, the constraint
manifold may consist of disjoint branches with no common points. Second, even if the
constraint manifold is a smooth surface it may consists of two branches connected at points
which cannot be reached by a continuous solution. The differential system becomes singular
at such points. This holds true both in planar and non-planar cases. There are many
possibilities that exist and one can analyze only several special cases. This is due to the
many parameters involved here (at least 7 components of the left equilibrium, coefficient
7, parameters B and s). Also, different dissipative mechanisms yield different behaviors,
depending on which of the 4 coefficients 5, p, v and & are non-zero. Dynamic behavior
of the system may even change within the same dissipative mechanism if different values
of the same dissipative coefficients are chosen. Therefore it is rather difficult to formulate
and prove general statements regarding the connectibility of equilibria. Part (b) of this
section gives an insight into this problem based on analysis of several numerical examples.
However, before doing that, perhaps a slightly different approach to the Riemann problem

is worth mentioning.
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Suppose we know all 7 components of the left state and one of the components of the
right state. We also assume that B® and v are known, but s is unknown. Then the following
result holds true.

Proposition 5.3 If all 7 components of the left state and one component of the right state
are known, then the MHD DAE (130) admits at most 6 different value of s, the wave speed.

Proof. In the same manner as in the proof of Proposition 5.2 one can use symbolic
calculations and MAPLE to transform 7 algebraic equations (i.e. (130) with zero right
hand side) to a 6 degree polynomial equation in variable s. The roots of this polynomial
are the 6 wave speeds, and the other unknown components of the right state are computed

as functions of s. O

5.5.4 Dissipative Mechanism and Existence of the Travelling Waves

The dissipative mechanism represented by coefficients My 45 v, and & in (130) gives different
structures for the DAEs depending on which of those coefficients are zero and which are
non-zero. Below, some typical cases are considered. For a particular problem it is usually
possible to eliminate some variables. This is not necessary for a general analysis. Also the
simplification can be complex. However, we shall do so to simplify the presentation. The
result will sometimes be a DAE or an ODE depending on the problem. The most interesting
from the DAE point of view, are DAEs in semi-explicit and conservative forms, either in
planar and non-planar cases. Some typical cases are described below. Specific numerical
examples will be examined more carefully in the next subsection.

Case 1: p only.
If only 4 is non-zero, then from (130) one obtains a scalar equation uy in the form

puz)uy = q(ug), (136)

where p(u3) and g(up) are polynomials in u, of degree 3 and 4, respectively, If we let
p(u2) = hy,(uz), then we have a DAE in conservation form

d
i1 (u2())] = g(ua(?)) (137)
The system (137) can be rewritten as a semi-explicit DAE
v = qlug) (138a)
0 = y—h(uz) (138b)

Note that numerically solving (137) is not the same as numerically solving (138). For
instance, a backward Euler gives different solutions. Transforming (137) to (138) increases
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the index by one. However, it is possible for some DAEs in conservation form that such
transformation does not change the index.

Theorem 5.3 Suppose that the DAE

M(up' = fi(u,t) (139a)
0 = fou,t) (139b)
is an undezx v DAE. Suppose also that the derivative array that determines v’ can be com-

puted by v differentiations of (139b) and v — 1 differentiations of (139a). Then the index
of

v = filut) (140a)
0 = folu,t) (140b)
0 = y-h(u) (140c¢)

is also v.

Proof. With one differentation of (140c) combined with (140a) we get (139a) and (140a)
is (139b). Thus the equations gotten by v differentations of (139b) and v — 1 differentations
of (139a) can also be gotten by v differentations of (140b), v — 1 differentations of (140a)
and v — 1 + 1 = v differentations of (140c). Thus the index of (140) is also v. |

Note that the four possible roots of g(uy) are the equilibria of the system. Roots of
p(uz) are the singular points of the system. They play an important role in the singularity
induced bifurcation in DAEs, which is discussed in Section 5.6.

Case 2: 7 only.
First, let’s analyze this case in a most general setting. The DAE (130) has the form

—suy +uug —e; = 0 (141a)

—suuz + ugut + P*—cy = 0 (141b)
—Suiuz + uyuguz — B*us —¢c3 = 0 (141c)
—Su Uy + Uy Uty — B ug —c4y = 0 (141d)
—sus + ugus — B uz —cs = nuf (141e)
—Sug + uge — B ug —cg = nul (141f)

—sur + (u7 + P*)ug — B (B uy + uzus + uqug) — ¢c7 = n(usug + ugug) (141g)

where ¢; are constants determined by w;. That is, ¢; is the ith entry of the vector w — F(w)
in (109).
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The Jacobians of (141) are

0 000 o0 0 0
0000 O 0 0
0 000 o0 0 0
Fs=10 000 0 0 o0 (142)
0 000 =9 0 0
0000 o0 n 0
1 0 0 0 0 nus nug 0O ]
[ uy — s u 0 0 0 0 0 ]
(U2 - S)U2 + Pl* (211,2 - S)Ul + P2* P:; P; Pg Pg P;
(ug — 8)us U3 (ug — s)uy 0 -B* 0 0
F,=- (ug — s)uy Uty 0 (w2 —8)uy 0 -B% 0
0 Us —-B* 0U2 — 8 0 0
0 Ug 0 -B* 0 Uy — 8 0
i (e 2] Qo 3 iy (0431 g (844 _J
(143)
where P = %{- and «; are nonzero entries. Let
-S4 uy U1 0 0 0
—suy +uj + Pf  —suy + 2uyuy + Py Ps Py Pz
0=- —8us -+ U3 w3 —SUy + UpUs 0 0
—8Uq + UsUy U Uy 0 —suy +ujue 0
ay ay — u?, - ug as + Bus ay+ Bug oy
(144)
To simplify the remaining discussion we rewrite (141) as
filug,up) = 0 (145a)
falun, vz, uz, ug, us, us, u7) = 0 (145b)
fs(ur, uz,uz,us) = 0 (145¢)
fa(ur,ug,ug,u6) = 0 (145d)
fs(ug,us, us) = nug (145e)
fo(uz, ug,us) = nuy (145f)
Jr(ur, ug, uz, ug, us, us, ur) = m(usul + ugus) (145g)

Proposition 5.4 For the system (141) with © defined by (144) we have that

1. If det(©) # 0 and uy # 0, then the DAE (141) is an indez one DAE with a 2 dimensional

solution manifold.
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2. If the pencil {Fy, F,} has 2 nonzero eigenvalues with nonzero real parts at an equilib-
rium, then these eigenvalues determine the stability properties of that eqilibrium on

the solution manifold.
3. The solution manifold is given by (141a)—(141d) and f7 = —usfs — ugfe + fr = 0.

Proof. Adding —us times row 5 to row 7 and —ug times row 6 to row 7 converts the
pencil {F,s, F,} to the pencil

0 0 0 011 * Oy,
Qi=10 nl 0], Q.= Xk ¥ (146)
0 0 0 O * Oy

where @ = [ 811 812 J The pencil {F,s, F,} is index one if and only if © is nonsingu-
21 O

lar. If Fs has constant rank, then the DAE is index one if and only if the pencil of its
linearization is also index one. This direct relationship between the index of the pencil and
the index of the DAE is not true for higher index DAEs. O

The solution manifold given by f; = 0,..., f; = 0, fy = 0 contains all the equilibrium
points. Provided its Jacobian is full row rank we get a well defined manifold.

There are several problems which can now arise in order for there to exists a traveling
wave that connects two equilibria. First, the solution manifold may consists of more than
one component. In order to connect them the equilibria need to be on the same component.
Secondly, even if the equilibria both lie on the same component of the manifold, there can
be difficulties. The equation det(®) = 0 defines another, possibly empty, manifold which
we call the singularity manifold. In some problems the singularity manifold may intersect
the solution manifold. If the equilibria are on opposite sides of the singularity surface, it
may not be possible to connect them with a solution. The specific examples given in the
next section illustrate these problems.

Some further simplifications of system (141) are possible. For example, by using sym-
bolic calculations in Maple one is able to transform (141) to the form

us = flus,up) (147a)
usg = g(us,us) (147b)
0 = h,(U5, Ug, Ug) (147(1)

where & is quadratic in all 3 variables.
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This system has several interesting properties. First of all, one is able to write (147) in

the form
J(u, u')u' = H(u) (148)

where u = (us, ug)'.

However, the Jacobian J(u,u’) has variable structure and depends not only on u but
also on u’. This makes the analysis of such a system rather difficult, and none of the existing
numerical algorithms for solving DAEs can be applied here if (148) has index greater than 1.
Instead, the usual approach was to break (141) into two subsystems, each valid on a separate
branch of the constraint manifold h = 0. These two branches are called the supersonic and
subsonic and their structures may have various forms. In the non-planar case considered in
example 2 below, the manifold 2 = 0 consists of two separate surfaces in variables u,, us and
ug. All 4 equilibria in this example lie on an “egg”-like part of the constraint manifold. The
3 equilibria lie on a subsonic branch, while the 4th equilibrium is on a supersonic branch.
No smooth connection exists between those two branches. However, it is possible to have

traveling wave solution between some of the 3 equilibria on the subsonic branch.

The common points between the subsonic and supersonic branches of the constraint
manifolds are called the sonic points where the wave speed equals the sound speed. One
can prove the following property linking the sonic points with the singular points of the
DAE system.

Proposition 5.5 The MHD DAFE singular points (i.e. common points of h = 0 and hu, =
0) are the sonic points of the system.

Proof. Consider first the planar case. Note that with a usual meaning of the varibales
us = BY, uy = v, ug = 0, the planar MHD DAE the planar case has the following form

9523 = f(BY;v) (149a)

0 = h(BY,v) (149b)

This semiexplicit DAE has singularity if 9h/dv = 0. Since Oh/dv = (0h/IBY)(OBY/ov),
therefore at the singularity B¥/0v = 0. On the other hand, it is known [48] that for any
wave speed s we have
d BY
5355:: 5 (150a)
dpv) (v—s)BY
By~ s2_ g2

(150b)

73



where a is the sound speed (a? = 0p/dp). Note that p denotes density (= u;) and therefore
it is a finite quantity. The last two formulas yield

IBY s —a?p
P o0 T eB (151)

If s = a then 0BY/dv = 0. This is exactly the case where the MHD DAE is singular. O

Case 3: 1 and u only.

If only 7 and p are non-zero in the dissipative mechanism in system (130), then the system

can be written in the form

2'(0) = f(2(6)) (152a)
y(8) = g(2(9)) (152b)

where 2 = (ug, us, ug)’, y = (u1, us, uq, u7), and f, g are nonlinear functions. Now, we solve
(152a) explicitly for uy, us and ug , then use (152b) to find the remaining variables. Instead
of having two separate constraint manifolds, or separate branches of the same manifold we
have here a simple nonlinear ODE with 2, 3 or 4 equilibria. Parameters 7 and p influence
the qualitative behavior near the equilibria and therefore the possiblility of connecting those
equilibria with each other may depend on the ratio /.
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Case 4: 1 and « only.

If 7 and & are the only non-zero dissipative coefficients in (130) then in the non-planar case

we have the system

knh(uz, us, ug)uy = f(ugz,us, ug) (153a)
nus = g1(ug, us, ug) (153b)
nug = ga(ug, us, ug) (153c)

where h(uz,us,ug) = 0 defines the singularity manifold.
System (153) is a conservative DAE, which can be transformed into a semi-explicit DAE,

but this usually increases the index by 1.
Case 5: x and p only.

If x and g are non-zero, then one has a system in the form

flug,uz)

g(u27 ’IL7)

(154a)
(154b)

h(uz)w(ug)uy =

w(ug)uy =

where h(u2) and w(u,) are polynomials in u,. Numerical example 4 covers this case.

Note that other combinations of the dissipative parameters are possible, but the cases

above are interesting enough for further numerical analysis.

5.6  Numerical examples.

5.6.1 Example 1: y only

Consider (130) with the right hand side equal 0 and the left equilibrium (denoted by A
[1,2,0.25,0.75,1,0.5,0.25]7 and s = 1, B® = 0.2, v = 1.4. Solving the
nonlinear system of 7 algebraic equations one obtains the following 3 solutions of (130) with

hereafter) u' =

zero right hand side (i.e. the potential right equilibria (denoted by D,B and C, respectively)

[ —53.75952301 ]

0.9813986445
—3.226374724
—0.9881873619
—16.38187362
—8.190936809
—582.1136634

~

2.104461466 |
1.475180951
0.4911957824
0.8705978912 | ,
2.205978912
1.102989456

| —1.033924030 |

[ —1.343641280 ]

0.2557537381
—0.1948210585
0.5275894707
—1.224105293
—0.6120526464

1.574389398 |

(155)

Suppose that we are interested in finding the travelling wave solutions of (130) with n = v =
# =0, ¢ = 1. This means that only the second and seventh equations in (130) have non-zero
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right hand side equal u, and uyu,, respectively. The solution manifold has dimension 1. In

fact one can obtain an autonomous DAE u, = F(uz) as follows

750u3 — 3534.25u3 + 5625.515u3 — 3391.7288u, + 555.3976

156
625u3 — 1925u3 + 1976uz — 676 (156)

uhy =

It can be easily checked that the numerator of the right hand side of (156) has zeros at the
4 equilibria given above, i.e. 2, 0.981398644, 1.475180951, 0.2557537381.

We can not connect all of them with orbits corresponding to the travelling waves. Be-
cause of the zero uz = 1 in the denominator of (156), we can connect 2 with 1.475180951 and
0.981398644 with 0.2557537381, only. Note that we can connect the equilibria 0.2557537381
and 0.981398644 only if 0.2557537381 is the left equilibrium and 0.981398644 is the right
equilibrium. Using the linearization of (156) we compute that u! is unstable, B, D are
stable, and C' is unstable. Fig.37 shows the solution of (130) for the six states between
the left equilibrium above and the second equilibrium in (155), which serves as the right

equilibrium.
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ut,...,ud as functions of theta
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Fig.37. Solutions u;(#), ..., ue(f).

5.6.2 Example 2: 7 only

Consider now a different set of constants on the right hand side of (130), namely y = v =
k =0, n # 0. The left equilibrium is chosen to be as before. Now, the fifth, sixth and
seventh equations in (130) have the right hand side non-zero, but the solution manifold
has dimension 2 and the system has the same four equilibria given above. By doing the
symbolic calculations with MAPLE and eliminating uy, us, u4 and u; from (130) we obtain
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the following 3 equations involving uy, us, ug and their derivatives (s =1, B* = 0.2,

y = 1.4)

nus = wusuy — 1.04us — 0.96
nug = ugug — 1.04ug — 0.48
nusus + nusug = 0.73u? + 0.73uf — 2.8315 — 0.75u2u,
—0.75uduy + 7.897uy — 3u’

(157a)
(157b)

(157¢)

It is easy to check that all four equilibria A,B,C and D satisfy the above equations.

That is, the right-hand side of (157) is zero for the respective values of uy, us and ug in o
and (155). Note that uj is not present in (157), but (157c) is quadratic in u,. Therefore, if
one computes the uy from (157c), then the two solutions for u, are obtained. Pluging any

of those solutions into the first two equations in (157) and transforming them into explicit

form yields several systems of 2 nonlinear equations in us and ug. This happens because of

several quadratic terms involved. Some of those ‘new’ systems may not have all the required

equilibria. However, a careful analysis of those systems shows that one is able to derive 2

explicit systems in us, ug such that one of them has equilibria A B and D, and the second

has only one equilibrium, namely equilibrium C. The phase flow of the first system is shown

in Fig.38. We are not able to get just one explicit system in us and ug with all 4 equilibria.
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The phase flow: u6 versus u5
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ub
Fig.38. The phase flow on the subsonic branch of the constraint manifold.

We are however, able to get an implicit system in us and ug with all 4 equilibria. Let us
compute uz from (157a) and plug it into the second and third equations. This process gives

nusug — nueuy = —0.48us + 0.96ug (158a)
L.75nudus + nusuiul + 0.75nudusul

—1.657nusus + 3n*(uj)? + 5.767uf

—0.05u5uf — 0.05u3 + 2.13658u2 — 0.72u2us
—0.72u} + 1.59072us — 2.7648 (158b)

One can check that (158) has all four equilibria A,B,C and D, but the system is in implicit
form and its Jacobian depends not only on us, ug but also on uf. Note that it follows
from (157) that for any equilibrium we have us = 2ug and then from (158b) one gets the
equilibria being the zeros of the 4 — th degree polynomial of the right-hand side of (158b).

Similarly, if we compute u, from (157b) and plug it into (157a), (157c) then we obtain

nueus — nusug = 0.48us — 0.96ug (159a)
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nusuguy + 1.75nudug + 0.75nulugul
+31*(ug)® — 1.657nucug + 2.88nug = —0.05u2u? — 0.05uf — 0.36u3 + 2.13658u2
—0.36uiug + 0.79536ug — 0.69120 (159b)

It can be checked that the above system has all 4 desired equilibria A,B,C and D, but as
before, the system is an implicit one and its Jacobian depends on us, ug and ug.

Note that both (158) and (159) are in the general form
F(u',u)=0 (160)

and after linearization we obtain the following eigenvalues at the equilibria

eig(A) = {0.2316;0.4800} (161a)
eig(B) = {-0.0939;0.2176} (161b)
eig(C) = {-0.9570; —0.3921} (161c)
eig(D) = {-0.0160;—0.0293)} (161d)

Thus equilibrium A is a repelling node, B is a saddle, and both C and D are attracting

nodes.

5.6.3 Example 3: 5 only (planar case)

Let the left state be
Wt =[4},0.5,0.2, -1, 10]7 (162)

with B* =2, v = 1.4 and s = 1. We have chosen 3 different values of u}, namely 15, 5
and 1. In the case u{ = 15 we have 4 equilibria, all of them lying on the closed branch
of the constrained manifold near the origin. Three of these equilibria are on the lower
part of this branch (i.e. below the singularity manifold) and one is above the singularity
manifold. As in the non-planar case the two branches are called subsonic and supersonic
branches, respectively. There are two singularity points on the constrained manifold where
the constrained manifold 2 = 0 crosses the higher-index manifold hw, = 0. Any solution
joining the equilibrium on the supersonic branch with an equilibrium on the subsonic branch
must go through a singularity point. The stability analysis of the four equilibria shows
that equilibria 2 and 4 are unstable and 3 is stable (subsonic branch). Therefore the only
connection between equilibria on the subsonic branch are 2 — 3 and 4 — 3. The equilibrium
on the supersonic branch is unstable. If v} = 5 we have two unstable equilibria lying on
separate branches of the constrained manifold. In the case when u} = 1 we have 2 separate
branches and 2 equilibria, namely u! and (0.122, -3.093, 3.878, —1.920,4.853).
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5.6.4 Example 4: x and 7 only (planar case)

We present here a planar case of x and 7 only. In the planar case one assumes that
uy = ug = 0 in (130). Thus we have a DAE in uy and us only.
Let

u' =8,0.1,2,-0.1,10]", B* =2, y=14, s=1, k = 1, n=0.1 (163)

Then we obtain four equilibria. Three of them are in the subsonic and one in the supersonic
region. Both regions are separated by the singularity manifold: h(ug,us) = kn(1.5463 —
2uy + 0.06944u2) = 0. The phase portrait is shown in Fig.39.

-1 . . . 2 3

ul
Fig.39. The phase portrait.

5.6.5 Example 5: n only (disjoint constraint manifold)

If we consider the non-zero 7 only and the planar case with
ul =[1,0.5,02,-1,10]%, B* =2, y=1.4, s = 1 (164)

then we obtain two equilibria only. The constraint manifold consists of two disjoint branches

as shown in Fig.40.
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Constraint manifold

Fig.40. Disjoint branches of a constraint manifold.

The two equilibria ' and [0.122,—3.093,3.878,—1.920,4.853] lie on disjoint branches
and no smooth solution exists between them.

5.7 Singularity Induced Bifurcation in MHD

As shown in the previous section the existence of traveling waves in MHD DAEs is restricted
by the presence of singularities which do not allow for smooth connections of equilibria on
different sides of the singularity. The singularity may be in the form of a 3D surface [40],
or a 2D curve (see Subsection 5.4 with  and g only), or just a point (Subsection 5.6.1 with
p only). In any case the constraint manifold is divided into separate branches. This is due
to the quadratic equation describing such manifold. In other cases the singularity manifold
may not intersect the constraint manifold at all, but no traveling wave solution exists due
to the equilibria lying on disjoint branches of the constraint manifold (see Subsection 5.5.3
above).

An interesting case is when an equilibrium is at the singularity. If a DAE depends on
a parameter, such as one of the components of the left equilibrium, then it may happen
that by changing this parameter we are able to shift an equilibrium to the singularity.
This problem is known in the DAE literature as a singularity induced bifurcation and has
been applied in the last few years only for the analysis of an electric power system [29],
[49]. Below we analyze this bifurcation in the context of semi-explicit DAEs. The following
theorem from [29] is the basis for such an analysis.
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Theorem 5.4 Consider a parameter dependent DAE

v = f(u,v,p) (165a)
0 = g(u,v,p) (165b)

withf:R"+m+q—+R”,g:R”+m+q—‘rRm,uEUCR”,vEVCRm,pEPCRq.

If =1, A(u,v,p) = det [3—9%#1], and

1. f(0,0,p0) =0, g(0,0,po) = 0, g% has a simple zero and trace[%adj(%%)gﬂ # 0,

[ 2f of
du v . .
2. o 9y | S nonsingular,
. du  Ov
ra; 8f o
du 5‘5 5%
%9 99 99 |, ;
3. 5% 5w op | s nonsingular,
24 94 24
. Ou v Ap

then there erists a smooth curve of equilibria in R+ which passe s through (0,0, po)

and is transversal to the singular surface at (0,0,p0). When p increases through Py one
eigenvalue of the system, (i.e. an eigenvalue of

J_ 0007 %00

Jdu  Ov v’ Ou

evaluated along the equilibrium locus) moves from C~ to C* if b/c > 0 (respectively, from
C* to C™ ifb/c < 0) along the real azis by diverging through co. The other n—1 eigenvalues

remain bounded and stay away from the origin. The constants b and ¢ can be computed by
evaluating

(166)

e[ 22
b = —trace [(%ad](av B (167a)
-1
oA oA oAy | B U e
= G lawwl | ul| |2 (1670)
p du  Ov dp
Proof. See [29]. O

Note that when an equilibrium is placed at the singularity then one of its eigenvalues
changes from either —co to +00 (or from 400 to —00). That is the solution reaches and
leaves the equilibrium with an infinite speed. In the particular examples below we will be

able to prove that trajectories reach and leave an equilibrium at the singularity in a finite
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time. The situation is similar to that in a simple DAE: ' = v, 0 = v2 — 4. Note that u #0,
except at t = 0 (we assume that u = 0 is reached at ¢ = 0, initial time is to < 0 and u(tg)
is finite). It remains to show that to is finite. This is in fact the case, since u(t) changes
according to: u’ = £/u, which has a solution u(t) = (t — ¢)*/4 and the initial condition is
u(fo) < co. Then ¢ = tg £ 21/u(ly) and u(t) = [t — to £ 2,/u(t0)]?/4. For t = 0 we have
w(0) = 0 = [~to £ 2/ut0)]*/4, therefore t, = +2,/u(%o) which is a finite quantity. Note
that the — sign is used when the trajectory approaches « = 0 at ¢ = 0 and the + sign is
used when the trajectory leaves u = 0 at t = 0.

As a consequence of Theorem 5.4 we have the following corollary. Since we will use the
technique later we include a proof.

Corollary 5.1 If a DAE satisfies the conditions given in Theorem 5.4, then there always
exists a trajectory to and from the equilibrium placed at the singularity.

Proof. Suppose p is such that the equilibrium is at the singularity. Solutions of the DAE
(165) are included in those of

v = f(u,v,p) (168a)
0 = g, +g, (168b)
or equivalently

v = f(u,v,p) (169a)
Vo= —(g,) g f (169b)

The trajectories of (169) away from A = det(gy) = 0 are also trajectories of
v = Af(u,v,p) (170a)
v = —A(g) lguf (170b)

away from A = 0. The assumptions give us a nontrivial trajectory of (170) which goes to
and from the equilibrium on the singularity surface A = 0. This in turn gives us a trajectory
of (169) which goes toward the singularity. However, g = ¢ is an invariant of (169). Since
g = 0 by construction at the equilibrium we must have g = 0 along the trajectory. But
then this trajectory is a solution of (168). O

In the two examples below we will show how to apply theorem 5.4 in the case of n = 2,
m =p=1and n =m = 1, respectively. Both examples perfectly identify the divergence
of an eigenvalue of (166) at the bifurcation point. Behavior described in the Singularity
Induced Bifurcation Theorem 5.4 is understandable intuitively. The drop by 1 in the rank
of g% results in the divergence of an eigenvalue through +oo0.
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5.7.1 Singularity Induced Bifurcation with 7 only

Consider the traveling wave MHD DAE with non-zero nonly. Such a system can be reduced
to the following form 77

us = fi(us, uy,p) (171a)
ug = fa(ug, uz,p) (171b)
0 = g(USaUG’u%p) (1716)

where g is quadratic in u,. Let the left state be
u' =[p,0.5,02,0.2,1,1,10]7, B* =2, y =14, s= 1 (172)

where p is the parameter (it represents density at the left equilibrium). By solving the
system of four nonlinear equations, namely

filus,ug,p) = 0 (173a)
fa(ue,uz,p) = 0 (173b)
g(us, ug, uz,p) = 0 (173¢)
Gus (Us, us, ug,p) = 0 (173d)

one is able to place any of the existing four equilibria at the singularity.

Suppose we find a p such that the singularity induced bifurcation theorem holds and an
equilibrium is placed at the singularity. Then there are trajectories going in and out of the
equilibrium. We wish to see whether they do so in finite time. Using equation (141a) we
get that (141c)— (141f) become

ciuz — Bfus —¢cy = 0 (174a)
ciug — Bug —cy = 0 (174b)
—sus + ugus — B ug —c5 = nuk (174c)
—Sug + ugug — BTug —cg = nug (174d)

Suppose that ¢; # 0. Then we can solve (174a) and (174b) to get

—8uUs + usug — B”cl_l[B$U5 +e]—es = nug (175a)
—stg + uptts — B e; (B ug + c4] — cg = Nug (175b)

This leads to the following result.

Lemma 5.1 Suppose that ¢; # 0. Then there exist constants ay, a9, not both zero, such
that ajus + asug = 0 is invariant under solutions of (141).
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Proof. Let z = ajus + asug. Then from (175) we have that 2/ = [—s+uy ~ cl“l(BI)Q]z-{-qb
where ¢ = —al(cl“chB‘” +¢5) — az(cl_lcl;Bjc + ¢6). Take a;, ay so that ¢ is zero. Then z
satisfies a linear homogeneous differential equation

2= [-s+uy~ cl_l(B””)2]z (176)
If 2(t) is zero for some tg, then it is zero for all ¢,. O

Now suppose that at the equilibrium the value of u; is such that [—s+uz—cy(B%)?] £ 0.
Suppose that the trajectories given by the singularity induced bifurcation theorem do not
reach or leave the origin in finite time. Then we can conclude by integrating either to the
singularity, or backward in time to it, depending on the sign of [—s + ug — ¢7}(B*)?], that
the singularity lies on 2 = 0. We focus now on the trajectories on z = 0. On this curve
we can solve for one of us, ug in terms of the other. We assume it is us. Then we get that
(174) reduces to a system in us, up. We translate the equilibrium to the origin. Keeping
the same name for our new variables and using the fact that (171c) is quadratic in us and
ug with no products of them, we have

’

ug ous + fuz + usu, (177a)

0 = ud+(a+ bus+ cudluy + dus + eu’ (177b)

The additional requirement that the origin is at the singularity gives ¢ = 0. We are
considering the case where the origin lies on a manifold defined by (177b) with @ = 0. Thus
(177b) must have real solutions for u; if us is near zero. Thus

(bus + cu?)? — 4(dus + eu?) > 0 (178)

for us near zero. Assume d # 0. The largest term is —4dus. Thus we must have —4dus > 0.
Then us does not change sign near the origin. Let us = xv? where  is either 1 or -1
depending on the sign of us. Then we have

2600 = kav? 4+ Buy + kvtusy (179a)

0 = u3+ (bkv? + cvt)ug + |d|v? + ev? (179b)

From (179b) we then get that uz = 2\/[dv + o(v) and (179a) becomes 2v' ~ av + k53/[d] +
vuz. But v — 0 and u; is bounded near the equilibrium. Thus along the trajectory, near
the equilibrium (origin), we have that v’ is bounded away from zero. Thus the v trajectories
leave and arrive in finite time. Hence the same holds for us. Therefore we have the following
theorem.
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Theorem 5.5 Suppose that only n # 0. Suppose that the equilibrium u. is placed at the
singularity by chosing ub. Let u' be such that ¢; # 0 in (141). Suppose that u§ and ug are
nonzero and d # 0 in (177). Then there exist solutions of (141) which reach and leave u®
in finte time.

The following example is chosen for illustration. For the particular choice of u! as in
(172) the traveling wave MHD DAE is

uy = —us+ 0.5+ usup + 8(us — 1)/p (180a)

ug = —ug+ 0.5+ uguz + 8(ug — 1)/p (180b)
0 = Lb5ujp—2.356usp + 13.3u; — 1.75u2uy — 1.75uduy + 1.7542

+1.75u3 — 0.5u5 — 0.5ug + 0.803p — 7.4 + (8us + Sug — 4u? — 4u? — 8)/p180c)

One can check that all conditions in Theorem 5.4 are satisfied.

Solving (173) we obtain the bifurcation parameter py = 17.97829718 together with the
following equilibrium at the singularity: (ug,us,ug) = (0.6082, —1.0346, —1.0346). Note
that in general solution of (173) is not unique. The other possible solutions for Po are:
po = {3.941980273,11.44859813, 183,7727649}. Each of these py’s corresponds to different
equilibrium being moved to the singularity. Table 1 illustrates location of the equilibria and
values of eigenvalues when p changes between 17.50 and 19.00. The constraint manifold for
P = po is shown in Fig.41. Both the constraint and singularity manifolds for p = pg are

shown in Fig.42.
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The constraint manifold: 0<x2<2; -6<x5,xX6<6

0.54

1.5¢4+

Fig.41. The constraint manifold for p = p,
Note that (176) with a; = 1, ay = —1 takes the form

2= (7T-uy)z (181)

where 2 = u5 — ug and uz — 0.6082. All of the conditions are met and there are trajectories
reaching and leaving the equilibrium in finite time.
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bnstraint and Singularity Manifolds: 0<x2<2; -6<x5,X6<6

(@]

by

0.5¢1

Fig.42. The constraint and singularity manifolds for p = py.

Note that the left state does not move with the change of p. For p < pg the three
equilibria lie on the supersonic branch of the constraint manifold, whereas for P > pp we
have two equilibria on each (subsonic and supersonic) branch.

5.7.2 Singularity Induced Bifurcation with x and 7 only

Consider now the case when x and 7 are non-zero (Subsection 5.6.4). The DAE has the

following structure in the planar case
"‘77}’(“2, US?p)uIZ = f(u2,U5,P) (182&)
nus = g(ug,us,p) (182b)

where h(ug,us,p) = 0 defines the singularity manifold and h, f and ¢ are all polynomial
functions.
We can place an equiulibrium at the singularity by solving the system

hug,us,p) = 0 (183a)
flug,us,p) = 0 (183b)
g(ug,us,p) = 0 (183¢)
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Note that placing an equilibrium at the singularity means that we approach a con-
stant state (zero time derivative), but on the other hand the dynamics are fast due to the

singularity.
Let the planar MHD system have the following left state
v = [p,0.5,0.2,1,10)7, B* =2, y =14, s=1 (184)
and £ = 1, n = 1. We have the following system

(250puz — 202p — 125u3 + 875)uy = —0.125(—20000uZulp + 1500u2p®
—160000uZus + 40000u2ugp — 2328uyp®
+160000uzus — 1750uiusp? + 12250u,p?
~10000uzusp + 160000 + 18000usp
—24000u?p — 400p + 1750u2p?

—160000us + 789p* — 500usp?) (185a)
us = —10us + 10ugus + 5+ 80(us — 1)/p (185b)

For such a system one of the possible bifurcation values of P is po = 18.72228883 for
which a saddle is placed at the singularity. The coordinates of that saddle at the singularity

are
(ug,us) = (0.6467800031, —0.9814200462) (186)

The phase portrait shown in Fig.42 (and zoomed in in Fig.43) indicates a possible connection
between a saddle and a node lying in separate regions divided by the singularity curve h = 0.
The connection is via an intermediate equilibrium (saddle) placed at the singularity. The
stable manifold of that saddle is not changed during the bifurcation process, but the unstable
manifold is changed so that divergence of the corresponding eigenvalue through +o00 occurs.
In this particular example there exist two traveling wave solutions: one going through the
singularity from saddle 57 to node N and the other from saddle 53 to node N without

crossing the singularity.
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Fig.43. The phase portrait of system (182) with saddle S, at singularity.
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Fig.44. The phase portrait zoomed in around saddle S,.

It is also interesting to note that by placing a node with two stable eigenvalues at the
singularity changes one of the eigenvalues so that it is —co on one side of the singularity
and 400 on the other one. Therefore both a node and a saddle have the same eigenvalue
structure when placed at the singularity. Another interesting property of this system is an
invariant manifold O — Sy — N which touches the singularity manifold at saddle Ss.

5.8 A Cautionary Example

The last example in this section illustrates that care must be exercised when dealing with
numerical issues in DAEs. Suppose that we consider the n only case of the MHD DAEs
with B* = 0, s = u}, and the remaining components of the left state are chosen to satisfy

Lo Lty 4 (uhy) = 0

3 , 1
uy + Z[(Ufrf + (ug)?] - R Sy

Then we have the following DAE

uy = (ug — s)us (187a)
Ué = (U2 - S)UG (187b)
0 = (ug—2s) <U5 + ug + %[ug + ug]) (187¢)
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The linearization around an equilibrium (us, ug, ug) is given by the pencil

1 0 0 Uy — § 0 Uy
A=]o0 10|, B= 0 up = s us
0 0 0 (ug — 8)(1+ 3us) (w2 —s)(1+ Sue) us + ug + 3(u? + ud)

(188)
The surface given by the constraint (187c) consists of a cylinder C and a plane P(uy = s)
which is perpendicular to the cylinder. The equilibrium points are all of P and the line
us = 0,u¢ = 0 and uy arbitrary on C. We denote this line by L and the points on P but
noton C' by P-C.

However, this information does not correctly capture the full solution behavior of this
example. To see this we examine the system more carefully. Let (ug—s)@Q be the righthand
side of (187c). If @ # 0, that is u ¢ C, then the DAE is semi-explicit index one and as noted
earlier, conditions (A1)-(A4) in Definition 1.4 hold. However, it will be more convenient to
consider (A1)-(A4) directly since we need the calculations later.

One differentiation of the DAE would suffice for considering solutions on P but two are
needed for C. Differentiating the equations in (187) twice and forming the Jacobian we see
that

[-1 0 0 0 0 0 0 0 0
0 -1.0 0 0 O 0 0 o0
0 0 o0 0O o0 0 0 0 O
* 0 = -1 0 0 0 0 0

Gy Gul=] 0 x + 0 -1 0 0 0 0 (189)

*x x Q 0 0 0 0 0 0
* 0 * % 0 = -1 0 0
0 * 0 *x x 0 =10

L+ % *x + x Q@ 0 0 0]

where * is a possibly nonzero entry whose value is not important for this discussion. If
@ # 0, then the rank of (189) is 8 (has corank 1). If only the first 6 rows are considered the
matrix has rank 5 (has corank 1) and the matrix is still one full. One can easily show that
(187) satisfies assuptions (A1)-(A4) and the requirements of theorem in Subsection 4.5 and
(187) is solvable index one DAE on P — C.

At an equilibrium on P — C we have the pencil

100 0 0 us
a=|0 10|, B=|0 0 us (190)
00 0 00 Q

where ) is nonzero. The pencil is regular and does correctly capture the index and solution

behavior.
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Suppose, however, that we are on C so that Q = 0. Then the matrix (189) is

-1 0 0 0 0 0 0 0 0]
0 -1 0 0 0 O O 0 o
0O 0 0 0 0 0 0 0 0
* 0 = -1 0 0 0 0 0
0 » x 0 -1 0 0 0 0 (191)
* *+ 0 0 0 0 0 o0 0O
* 0 * =« 0 = -1 0 0
0 * *x 0 * x 0 =1 0
L x x x x 0 0 0 0]

One-fullness and constant rank are invariant under invertible row operations that do not
originate with the first three columns. Using the first two rows to zero below them and the
7th and 8th columns to zero to the left, we get

[-1 0 0 0 0 0 0 0 0]
0 -1 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 o0
0 0 x -1 0 0 0 0 0
0 0 x 0 -1 0 0 0 0 (192)
0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 -1 0 O
0 0 0 0o 0 0 0 -10
L 0 0 x * x 0 0 0 0]

which has rank no more than 7. But as noted earlier, the rank is 8 if @ # 0. A similar
calculation, which we omit, works for 3 differentiations which is the maximum needed since
the system has three variables. Thus (A3) is violated since the rank is not constant in a
full neighborhood of any points on C' and the DAE is not uniformly solvable on C or any
submanifold of C.

We now look at the solutions on C. Since the problem appears to be index 2 we expect
another constraint. Differentiating the constraint (187c), we get, after some simplification,
that we have the additional constraint

uitul=0 (193)

on C'. Thus us = 0, ug = 0 which is the line L. We already know that L consists of a line
of equilibria stretching up the side of the cylinder. However, this does not fully describe
the solutions. If us = 0 and ug = 0, then the DAE on C puts no restrictions on u,. Thus
the DAE on C has solutions us = 0, ug = 0 and ug arbitrary. The DAE is not solvable.
DAEs with an infinite number of solutions have been discussed elsewhere [17]. However,
some sort of regularization, motivated by physical considerations, is needed to pick out a

particular solution.
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Finally, we note that the pencil (189) on C is

100 00 us
A=1010{, B=|0 0 ug (194)
00 0 00 0

which is not regular.
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parameter

equilibria: (z, 25, z6)

eigenvalues

p=17.50

(0.5000,1.0000,1.0000)
(0.7455,-0.2115,-0.2115)
(0.5842,-1.0371,-1.0371)

(0.4398,-0.0429)
(0.2026,0.1975)
(2.2231, 0.0413)

(0.3200,0.1923,0.1923)

(-0.2117,-0.2228)

p=17.70

(0.5000,1.0000,1.0000)
(0.7462,-0.2424,-0.2424)
(0.5943,-1.0370,-1.0370)

(0-4192,-0.0480)
(0.1981,0.1981)
(3.671, 0.0463)

(0.3253,0.2156,0.2156)

(-0.2089,-0.2227)

p=17.85

(0.5000,1.0000,1.0000)
(0.7466,-0.2661,-0.26661)
(0.6018,-1.0360,-1.0360)

(0.4044,-0.0518)
(0.1947,0.1866)
(7.6068,0.0500)

(0.3202,0.2328,0.2328)

(-0.2066,-0.2226)

p=17.95

(0.5000,1.0000,1.0000)
(0.7274,-0.2822,-0.2822)
(0.6068,-1.0350,-1.0350)

(0.3949,-0.0543)
(0.1924,0.1832)
(33.5211,0.0525)

(0.3318,0.2441,0.2441)

(-0.2050,-0.2225)

p=17.97

(0.5000,1.0000,1.0000)
(0.7468,-0.2855,-0.2855)
(0.6079,-1.0347,-1.0347)

(0.3930,-0.0548)
(0.1920,0.1826)
113.65,0.0530)

(0.3323,0.2463,0.2463)

(-0.2047 -0.2225)

p=17.97829718

(0.5000,1.0000,1.0000)
(0.7468,-0.2869,-0.2869)
(0.6082,-1.0346,-1.0346)

(0.3923,-0.0550)
(0.1918,0.1823)
(£00,0.0533)

(0.3325,0.2473,0.2473)

(-0.2045,-0.2225)

p=18.00

(0.5000,1.0000,1.0000)
(0.7469,-0.2904,-0.2904)
(0.6092,-1.0343 -1.0343)

(0-3902,-0.0556)
(0.1913,0.1815)
(0.0537,-43.0570)

(0.3331,0.2497,0.2497)

(-0.2042,-0.2225)

p=18.20

(0.5000,1.0000,1.0000)
(0.7471,-0.3238,-0.3238)
(0.6191 ,-1.0306,-1.0306)

(0.3721,-0.0604)
(0.1867,0.1744)
(0.0586,-3.9483)

(0.3382,0.2719,0.2719)

(-0.2007,-0.2223)

p=18.50

(0.5000,1.0000,1.0000)
(0.7472,-0.3764,-0.3764)
(0.6337,-1.0220,-1.0220)

(0.3466,-0.0676)
(0.1795,0.1627)
(0.0661,-1.4918)

(0.3458,0.3046,0.3046)

(-0.1952,-0.2218)

p=19.00

(0.5000,1.0000,1.0000)
(0.7456,-0.4738,-0.4738)
(0.6582,-0.9962,-0.9962)

(0.3078,-0.0789)
(0.1667,0.1388)
(0.0792,-0.5783)

(0.3352,0.3575,0.3575)

(-0.2100,-0.2437)

Table 1: Equilibria and their eigenvalues during bifurcation.
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6 Conclusions and Further Research Topics

6.1 Other Boundary Value and Boundary Control Problems for PDAEs

So far we have considered simple boundary value and boundary control problems for linear
PDAEs. There are a number of other more complicated formulations, for example, a two
point boundary value problem (TPBVP) for PDAEs which has not been analyzed in detail
yet. One can expect to obtain several interesting results for a TPBVP for PDAFs. Perhaps
some preliminary results are worth mentioning. First, one TPBVP for a simplified PDAE
has the following form

Aut + Bug, = f(z,t) (195a)
Mlu(O, t) = 0, MQ’(L(L, t) =0 (195b)
Q1u(z,0)+ Q2(2,T) = 0 (195¢)

where ()1 and @, are some r; X ny matrices (ny is the dimension of the regular part of
pencil (A, B), ry is given below). The M; and M, denote boundary operators. A special
case of (195¢) includes the case when (195¢) is replaced with Qiu(z,0) =0, Q3u(z,T) = 0.
Problem (195) is known as a TPBVP for simplified linear PDAEs. A similar problem
for linear DAEs was considered in [31], where it was proved that Q1 and Q2 must satisfy

the following condition
1 = rank[Q1, Q2] = core-rank(A,) (196)

where core-rank(A,) = rank(APA,), superscript D denotes the Drazin inverse [12] and
A, = (wA - B)~'A. Condition (196) is not sufficient in case of (195). It may happen that
the spectrum of the operator d?/0z? intersects the spectrum of the modal TPBVP DAE
(i.e. a TPBVP for a system of modal DAEs, see Subsections 3.4 and 4.1). This may yield
nonunique solutions as the following example shows.

Example 6.1 Consider the zero Neumann boundary conditions at ¢ = 0 and z = 1 for
system (195) with

1 00 0 10
A=10 10|, B=|-100], flzt)=0o, (197)
0 00 0 01
and the boundary conditions (195¢) with
-1 00 110

for T =1.
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Note that due to the zero Neumann boundary conditions 0 ¢ p(P) (p(P) is the resolvent
set of P = 5‘9;5). Also, since 0 ¢ p(P), the nilpotent part will admit nonunique solutions.
The regular part will also have nonunique solutions, but the reason for this is quite different.
It is easily seen that the TPBVP DAE has nonunique solutions u(z,t) = (c,0,a(t)), where
¢ € R, and o(t) is a continuous function such that a(1) = 0. The point spectrum of the
spatial operator is 0, (2k+1)%; k=0,1,2,... . The first eigenvalue in this set is responsible for
nonuniqueness of the solution for the nilpotent part. Figenvalues Qk%)l for k=0,2,4,...,
are responsible for nonuniqueness of the solution of the regular part. FEigenvalues with
k=1,3,5,... do not cause any problems in this example. The analysis is as follows. The
regular part of the DAE is

Ut reg(t) — [ ° (1) } (26 + 1) St ey (6) = 0. (199)

The first two rows of Q; and Q together with the BVP Jor the regular part yield for

ukﬂ‘eg(t) = (ull:‘reg(t)’ uz,reg(t))T

[—01 (I)JJr[é éJezpq _01 3J(Qk+1)g>uk,,eg(o):o, (200)

i o

which gives ~

[ 2 1]
U reg(O) = 0, k= 1,3,5,..., (201)
0 1]
and i
[0 -1
Ukreg(0) =0,  k=10,2,4,.... (202)
o o0 |

Therefore the even elements of the point spectrum of the spatial operator allow u}z’reg(O) £ 0.
This yields uy(z,t) = ¢ € R, uz(z,t) = 0, and us(t) = a(t), uz(T) = 0.

The eigenvalue 0 in the point spectrum of the spatial operator is responsible for non-
uniqueness of ug(z,t), while the spectrum of the regular part of the DAE BVP intersects
even eigenvalues &;91, k =0,2,4,..., yielding nonuniqeness of the solution for the regular
part. Note that f(z,t) = 0 above.

There may also be another type of nonuniqueness associated with the zero eigenvalue
of the spatial operator if fi(t) is such that it is nonzero at ¢ = 0 and/or t = T, and if there
exists coupling between reqular and nilpotent subsystems. This happens when the solutjon
of the nilpotent part is nonunique and there exists a coupling of boundary conditions at
t=0ort=T due to (198). In other words the nonuniqueness of Uk nit(t) is transmitted

98



onto nonuniqueness of u .4(t). The above is easily seen if one considers the formula for
the general solution of the BVP for (195) given by
fﬁ,

g , . o
Uhrea(t) = QR 4 Qe ) (Y- AT QR U SN 0)

=1

. . t
QI + Q1 [ ey (5)ds (2032)
T
gle—J/\kT/t eJ/\ksfk,reg(s)ds)

where Q;”, J=1,2;1= 1,2, are matrices defining the BVP (after transforming the PDAE

into cannonical form) and
Qu=[Q1",07°), Q2=[Q3,0%] (204)

where n; and n, are dimensions of the regular and nilpotent parts, respectively. Particular
forms of Q;” may give nonuniqueness of ug y(?) if fx(0) and/or fi(T) are nonzero.

The above example illustrates just one of many possibilities in boundary value or bound-
ary control problems that may be of interest when dealing with PDAEs.

6.2 Generalization of the Singularity Induced Bifurcation in DAESs

Since the travelling wave solutions in dissipative systems of conservation laws are, under
some mild conditions, equivalent to the shock solutions in nondissipative systems, it seems
interesting to examine how the singularity induced bifurcation impacts shock structure. No
such analysis exists so far.

Also, there are other areas of applications in which travelling waves play an important
role. There is a system of 5 nonlinear PDEs in hypoplasticity for which the Riemann
problem has been recently analysed in [37].

Another aspect of the singularity induced bifurcation is also worth analysing. Namely,
one may be interested in generalization of the singularity induced bifurcation theorem for
multi-parameter bifurcation or the case when Dy,g(u,v) has a multiple zero eigenvalue. The
following simple example has double zero eigenvalue of D,g(u,v) at the singularity.

Example 6.2 Let

up = p—v— vy (205a)
uy = p—v — vl (205b)
0 = w—ovf 4oy (205¢)
0 = up—o? (205d)
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Since
og —2v v |9
det% = det [ 9w, 0 | T 207, (206)
the DAE is singular if v; = 0.
It 1s easy to check that the following two equilibria of this system are placed at the

singularity

0 0 0 0 o _ (O,O’O’O’O)
(u17u27v17v2’p ) _{ (0,0,0,17 1)

Note that g% has a double root at each of these equilibria and

of _0f[9917 09 _ [ % -y (207)
du Ov | dv du zvl’lz _L%_;‘;’Z

has two eigenvalues diverging through +o0o at both equatlibria, but the pattern of divergence
is different at each equilibrium.

6.3 MHD DAE as a Test Problem for a General Purpose Numerical
DAE Solver

The MHD DAE presented in some detail in Subsections 5.5-5.7 seems to be an ideal test
problem for any general purpose DAE solver. There exists no such solver today and several
existing DAE packages are applicable only in special cases of (1). Those special cases include
for example only index 1 DAE, a DAE in Hessenberg form, or a DAE with time-dependent
Jacobians only. Note that as shown in Subsections 5.5, 5.6 the MHD DAE may not have
any of the above properties. The MHD DAE may have Jacobians dependent not only on ¢,
but also on z and 2’ (Subsection 5.6.2). Note that the general MHD DAE includes many
special cases depending either on the dissipative mechanism (coefficients n, &, u, v) and
on the type of process (e.g. adiabatic with constant pressure, or isotermal with constant
temperature). This yields different substructures of ( 130), some with singularities and/or
impasse points some without singularities and without impasse points. Note also that the
singularity induced bifurcation and our desire to connect two equilibria on two different
sides of singularity via an intermediate equilibrium at the singularity will be a particularly
difficult problem to handle by a DAE solver. This is because one is not interested in some
neighborhood of the equilibrium at the singularity but exactly at that one single point
(equilibrium). Any DAE solver would have to exactly hit the intermediate equilibrium.
This presents additional difficulties in any predictor-corrector method. The ideal goal would
be of course to treat the MHD DAE (130) as a black boz and develop a general purpose
DAE solver which can handle all particular cases examined in Subsections 5.6 and 5.7 no
matter what the dissipative mechanism is, no matter whether we have singularities and/or
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impasse points, and no matter what the nature of the physical process is. It seems that
the above issues define a long range research project in DAEs but work in this direction is
worth being undertaken.

6.4 Other Systems of Conservation Laws

Although the systems of gas dynamics and MHD conservative laws have been analyzed in
some detal in the preceeding sections, similar analysis can be carried out for other systems
described by (102). It is well known that many nontrivial mathematical problems occur for
the conservation laws in elastoplasticity [35]. The 7 nonlinear non-dissipative equations in
elasticity have the following form

pet(pv)y = 0 (208a)

(f)e+ (rhof'vl)y = (v), = 0 i=2,3 (208b)

(p0)s + (pr'v')s = (0%), = 0 i=1,2,3 (208c)

Se+0'S, = 0 (208d)

This system of 7 equations has the general form (102) with « = [f1, 2, £3] being a defor-
mation gradient vector, o(f, 5) = [0},0?, 5% is the stress vector for a uniaxial deformation,

v = [v}, 4%, 03] is the velocity vector, §' is entropy, and p~t = f'. The Jacobian of F(u) in

(102) for the above system is

r pl _p_l -
ol —p-1
ol —p~!

Flluy= | =p7lop —pTlop —p7lal, ! —p7lok (209)

—P_10;1 —p‘laf,z —P_1(’;3 vl —p~lo}

—P_lff?l _p—10?2 _p—la% vl —p~lo3

L vl J
where o}, denotes partial derivative of o* w.r.t. m.
The characteristic speeds can be found as follows

det(Al — F'(u)) = p~®(A — v")det[p* (A — 01 )T - C] = 0 (210)

where C' = (U}J), 4,7 =1,2,3. One speed is A = v!. Also, if ¢ = p2(\ — v1)? (an eigenvalue
of '), then for each ¢ we have two characteristic speeds: A = V14 p=1c1/2 and \’s are real
if €' is positive definite. That is the system is thermodynamically stable. In this case we
have a total of 7 different real characteristic speeds and the system is genuinely nonlinear.
This yields equivalence between the shock solutions of the hyperbolic systems in elasticity
and the traveling solutions in the corresponding dissipative sustem. One may expect to
obtain different types of DAEs in elasticity, depending on the dissipative terms involved.
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6.5 DAEs and Catastrophy Theory

As was shown in Section 5 the MHD DAEs can have constraint manifolds of different shapes.
The equation describing the constraint surface is a quadratic polynomial in 3 variables.
Since there are many parameters involved in the original system (130), the shape of this
3D surface may be quite complicated. One may expect that other systems of conservation
laws may have constraint manifolds of degree higher than 2. If the degree is at least 3, then
various interesting shapes may be involved. This seems to show that there are obvious links
between DAEs and catastrophy theory. At present, those links are not well understood
and when analyzed may yield interesting results. The catastrophy theory examines various
algebraic equations in the 3D case such as, for example, y? = 2z? (Whitney umbrella), or

3

y? = 2322 (folded Whitney umbrella). The other type of shapes are: swallowtail, pedal loci,

cusp, and Legendre singularities [41], [42).

6.6 Conclusions

Analysis of DAEs is an important topic in the current research in applied and numerical
mathematics. As yet, there are many open problems and even some elementary questions
have not been answered. One particular area of research of this kind is the broad area of
partial differential equations. It is natural to expect that with the advancement in computer
technology and the development of sophisticated methods of mathematical modeling, we
will face more and more complicated models of real systems to be analysed. Mixed systems
of ordinary and partial differential equations are already used to model many dynamical
systems in mechanical, electrical and chemical engineering [25], [26], [49].

Our goal in this thesis has been to analyse such systems. We have defined three different
indices for PDAEs, compared them with each other and with the indices in finite dimensional
DAEs. It has been shown that even in linear case, the indices of PDAEs can differ from
each other. This is not the case in linear finite dimensional DAEs. Different type of spatial
approximation may also yield DAEs with different indeces even when for the same PDAE.
This has been illustrated by approximation with the finite difference and finite element
MOL. Additionally, the index of a PDAE may depend on the weighting coefficients, as is
shown by an example of the boundary control problem in Section 4. Generally speaking,
the PDAE exhibit much richer behavior than finite dimensional DAFs and one needs to be
cautious with the application of different numerical integrators when dealing with PDAEs.

Another area where DAEs naturally occur is nonlinear PDEs. It has been shown that
certain types of solutions (e.g. traveling waves) may lead to DAEs. We have considered
systems of conservation laws in gas dynamics and MHD and derived MHD DAEs in both
semi-explicit and conservation forms (Section 5). It has been shown that some well-known
notions in systems of conservation laws can be linked to corresponding notions in DAEs.
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One such example is the correspondence between the sonic points and the higher index
DAE.

We have also shown that the MHD system may be subjected to singularity induced
bifurcations. In some cases, by placing an equilibrium at the singularity, one is able to
find traveling waves between equilibria lying on the opposite sides of that singularity. The
equilibrium at the singularity serves as an intermediate point. In some cases this equilibrium
is reached/left in finite time. This type of traveling wave solution may lead in the future to
the proof of existence of some type of new shock solutions in non-dissipative MHD systems.
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7 Appendix I

In the proof below only the most important responses from MAPLE are printed out, i.e.
formulas for ul, 42, u3, u4, u5 and u7 as functions of u6. Some other intermediate formulas
are very long. There is nothing special about the fact that ul, u2, u3, ud, ub5 and u7 are
function of u6. One can choose another variable and express other variables as function of

that particular one.

In what follows we do all calculations symbolically for the general 7 numbers u/ 1, ..., ul?
(‘left’ state), wave speed s, and constant parameters gam (), Bx (B*). Compute first
the ‘left’ value of Pstar (= P*). Note that p (static pressure) is eliminated from the two
equations given below (127):

Pstarl := (gam — 1) * (ul7 — (Bz? + ul5? + ul6®)/2 — ull * (ul2? + ul3? + ul4?)/2) +
(Bz? + ul5? + ul6?)/2:

The general expression for Pstar in terms of the seven semistate variables ul,...,u7is:

Pstar := (gam — 1) * (u7 — (Bz? + u5? + u6?)/2 — ul + (u2? + u3? + ud?)/2) + (Bx *
Bz + ub * ub + u6 * u6)/2:

Solve the first equation in (130) for ul:
ul := solve(—sxul 4+ s+ ull + ul *u2 — ull % wl2 = 0,ul):
Substitute ul into the third equation in (130) with the zero right hand side:

u3 := solve(simplify(—s+ul * ud + s+ ull * wl3 + ul * u2 * u3 — Bz + ub — ull * wl2 *
ul3 + Bz x ul5) = 0,u3);

sull wl3 — Bx ué — ull wl2 ul3 + Bz ul5

us = —sull + ull ul2

Substitute u1 into the fourth equation in (130) with the zero right hand side:

ud := solve(simplify(—s+ ul * ud + s % ull * uld + ul  u2 * ud — B + ub — ull + ul2 +
uld + Bz * ul6) = 0, ud);

_ sull ulf — Bz u6 — ull ul? ulj + Bz ul6
—sull + ull ul2

ud 1=

Substitute u1, u3 and u4 into formula for Pstar (see above):

Pstar := simpli fy((gam — 1) * (u7 — (Bx? + u5% + u62)/2 — ul + (u2? + u3? + ud?)/2) +
(Bz * Bz + u5 * u5 + ub * u6)/2):
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Use Pstar given above and solve the second equation in (130) (with the zero right hand
side) for u7:

u? = solve(-—s*ul*u2+s*ull*u12+u1*u2*u2+Pstar-—ull*ulQ*ul2—Pstarl =0,u7):

Use u3 computed above and solve the fifth equation in (130) (with the zero right hand side)
for u2:

u2:= simplify(solve((—s*(u5—ul5)+u5*u2—Bm*u3—(ul2*u15—3x*ul3)) =0,u2)):

Use u2 computed above and solve the sixth equation in (130) (with the zero right hand
side) for u5:

u5 = simplify(solve((—s*(UG—u16)+u6*u2—B:c*u4—(ul2*u16—Bm*ul4)) = 0,ub));

ub uls

ub = ul6

Use u5 to simplify u2:
u2 := simplify(u2);

u 1= (—ub s> ull + ub sull wl? + s® ull ul — 2 s ull ul2 ul6 + u6 Bz?
— Bz ul6 + ul2? ulg ul])/( ull (—s+ ul2)ub)

Simplify u3 so that now u3 is a function of u6:
u3 := simpli fy(u3);

g = —sull ul3 ul6 + Bz u6 ul5 + ult ul? ul3 ulg — Bz ul5 ul6
o (—=s+ ul2) ul6 ull

Simplify u1 so that now u1 is a function of u6:
ul := simpli fy(ul);

ull? (—s + ul2)? u6
82 ull ul6 — 2 s ull ul? ul6 + u6 Bz® — Bz? ul6 + wl2? ul6 ult

ul =

Simplify Pstar so that now Pstar is a function of u6:

Pstar := simpli fy( Pstar):
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Simplify u7 so that now «7 is a function of u6:
u7 := stmpli fy(u7):

Since ul, u2, u3, u4, u5 and u7 are given above (all are functions of u6), therefore we
can use the seventh equation in (130) (with the zero right hand side) and simplify it so
that its left hand side will be a polynomial in u6 only, say poly(u6). Then solving the
equation poly(u6) = 0 one gets several equilibria for u6. The correspbnding values for
ul, u2, u3, u4, ub and u7 can be easily found by using the formulas derived above. The
poly(ub) is of 4 degree as the following calculation shows:

f(ub) := simplify(—s+*u7+ s+ ul7+ (u7+ Pstar) * u2 — Bz x (Bz *u2 + u3 * ub + ud *
u6) — (ul7+ Pstarl) * ul2 + Bz * (Bz + ul2 4+ ul3 x ul5 + uld * ul6)):

Check if ul6 is a zero of f(u6):
subs(u6 = ul6, f(u6));

Finally, poly(u6) =numerator of f(u):
poly(u6) := simplify(f(u6)* (ul2 — s) * ull * ul6? x u6? x (gam — 1) * (=2)):

Since deg[poly(u6)] = 4 therefore we can have at most 4 equilibria of the travelling wave
DAEs (130). Note that one of those equilibria should be the assumed ‘left’ equilibrium,
which means that poly(ul6) should be zero. This is in fact the case as the following substi-
tution shows. If the ‘left’ equilibrium is hyperbolic then one can assure the existence of at

least one more equilibrium.

subs(u6 = ul6, poly(u6));

Note that ul6 is really a root of poly(u6) = 0. Additional analysis shows that if ul6 # 0, then
ul6 is a single root. Close examination of the 4th degree polynomial poly(u6) shows that its
leading coefficient is nonnegative and equal Bz?(ul6% + ul5?). Also the constant coefficient
of this polynomial can be written in a closed form ul6*(gam + 1)[(s — ul2)?ull — Bz?]?, i.e. it
is nonnegative. The above facts are equivalent to the fact that there exists at least one more
root (except ul6) of poly(u6). In addition, this additional root has the same sign as ul6 (or
equals zero). This is because the constant and leading coefficients are both nonnegative.
Therefore the MHD travelling wave DAE has at most 4 and at least 2 equilibria.
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